Limits-Trigonometric Functions

When calculating trig limits remember to consider the following:

1. Remember to still plug in the x - value first. If you get a numerical answer, that is your limit.
2. If you get $\frac{0}{0}$ after plugging in the x-value, that means there is a hole, and like the other problems with holes, there is a limit. Because we cannot factor, cancel and plug the x-value into what the function left after factoring, we will look at several of these situations to see if there is a pattern to these limits that we can use.
3. If you get $\frac{1}{0}$ or $\frac{\#}{0}$, then there is a vertical asymptote at that x-value and the limit DNE. All of the basic trig have asymptotes that go in opposite directions around the vertical asymptote. We will not pursue which direction the graph is heading with trig limits unless the function is squared or absolute valued.
4. $\lim _{5 \pi} \sin x=$ \qquad
$x \rightarrow \frac{5 \pi}{6}$
5. $\lim _{3 \pi} \sin x=$ \qquad
6. $\lim _{x \rightarrow \frac{\pi}{}} \cos x=$ \qquad

$$
x \rightarrow \frac{2 \pi}{3}
$$

4. $\lim _{x \rightarrow \frac{11 \pi}{6}} \cos x=$ \qquad

$$
x \rightarrow \frac{11 \pi}{6}
$$

5. $\lim _{x \rightarrow \frac{2 \pi}{3}} \sin 6 x=$ \qquad
6. $\lim _{x \rightarrow \frac{5 \pi}{6}}(\sin 2 x-\cos 6 x)=$ \qquad
7. $\lim _{5 \pi} 7 \cos x=$ \qquad
8. $\lim _{\pi} \csc x=$ $x \rightarrow-\frac{\pi}{4}$
9. $\lim _{x \rightarrow \frac{4 \pi}{3}} \csc x=$ \qquad
10. $\lim _{\pi} \sec x=$ \qquad
11. $\lim _{7 \pi} \sec x=$ \qquad
12. a. $\lim _{\pi} \tan x=$ \qquad

$$
x \rightarrow \frac{\pi}{3}
$$

13. $\lim _{x \rightarrow \frac{5 \pi}{4}} \tan x=$
14. a. $\lim _{x \rightarrow \frac{5 \pi}{6}} \cot x=$
15. $\lim _{x \rightarrow \frac{5 \pi}{3}} \cot x=$ \qquad

Now examine the graphs of the following functions and give their limits:

Example 2
$\lim _{x \rightarrow 0} \frac{\sin 4 x}{x}=$
Example 3
$\lim _{x \rightarrow 0} \frac{\sin 4 x}{2 x}=$ \qquad

Example 4
Example 5
$\lim _{x \rightarrow 0} \frac{\sin 6 x}{2 x}=$

$$
\lim _{x \rightarrow 0} \frac{\sin x}{2 x}=
$$

\qquad

What do you notice about the coefficients of the x's and the answer to the limit? $\lim _{x \rightarrow 0} \frac{\sin a x}{b x}=-$
Does this Pattern work for $\cos \mathrm{x}$ in a similar pattern?
$\lim _{x \rightarrow 0} \frac{\cos 3 x}{6 x}=\frac{1}{0}$ This means that there is a vertical asymptote on this graph at $x=0$. Always remember to plug in the x -value first!

Because $\tan x=\frac{\sin x}{\cos x}$ the pattern also works for $\tan x . \lim _{x \rightarrow 0} \frac{\tan 5 x}{3 x}=-$

There is one other famous trig function that does not show up a lot, but here it is: $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=\frac{0}{0}$, which means there is a hole and means that there is a limit. We could use something called the squeeze theorem, but we will just look at the graph and determine the answer.

After looking at the graph, $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0$ or $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$.

Mixed Problems: Remember- The first thing you always do is......Plug in the number!

1. $\lim _{x \rightarrow 0}(2 \sin x+3 \cos x)$
2. $\lim _{x \rightarrow 0} \frac{x}{\tan x}$
3. $\lim _{x \rightarrow 0} \frac{\tan 2 x}{x}$

Split this one up first
and take the limit of
each piece and
multiply together.

7. $\lim _{x \rightarrow 0} \frac{\tan ^{2} x}{2 x}=$
$\frac{\tan x \cdot \tan x}{2 x}=\frac{\tan x}{2 x} \cdot \frac{\tan x}{1}$
8. $\lim _{x \rightarrow 0} 3 x \sec x$

9. $\lim _{x \rightarrow 0} \frac{x}{\sin 3 x}$

Split this one up first and take the limit of each piece and add together.
6. $\lim _{x \rightarrow 0} \frac{x+\sin x}{x}$
8. $\lim _{x \rightarrow 0} \frac{\tan 5 x}{\tan 2 x}$
10. $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}$

Be Careful- Remember the Golden Rule of Limits!
12. $\lim _{x \rightarrow 0} \frac{\tan 2 x}{3}$

