Solving an Equation With Two Radicals

EX #6: What is the solution of the following?

$$\sqrt{5x+4} - \sqrt{x} = 4$$

SOLVING SQUARE ROOT AND OTHER RADICAL EQUATIONS

VOCABULARY

Radical equation – an equation that has a variable in a radicand or has a variable with a rational exponent.

EX.
$$\sqrt{x^3} + 1 = 65$$

Square root equation – a radical equation in which the radical has index 2

EX.
$$\sqrt{x} = 9$$

To Solve Radical Equations:

- 1. Isolate the radical on one side of the equation
- 2. Raise each side of the equation to the power of the index.
- 3. Solve for the variable.
- 4. For equations of the form: $x^{\frac{m}{n}} = k$ Raise each side of the equation to the power n/m.

NOTE: If either *m* or *n* is even, then $(x^{m/n})^{n/m} = |x|$

Solving a Square Root Equation

EX #1: Solve.

$$\sqrt{4x+1}-5=0$$

EX #2: Solve.

$$\sqrt{2x-5} + 4 = 7$$

Checking for Extraneous Solutions

EX. #5: Find the solution and check you results.

A.
$$\sqrt{5x-1} + 3 = x$$

B. When should you check for extraneous solutions?

Solving Other Radical Equations

EX #3: Solve.

A.
$$2(x+3)^{\frac{2}{3}}=8$$

B.
$$5(x+1)^{\frac{3}{4}} - 1 = 39$$

Using Radical Equations

EX #4: The size of Meteor Crater in Arizona can be modeled by the equation $d = 2\sqrt[3]{\frac{V}{0.3}}$, where V is the volume in cubic meters, d is the diameter of the rim, in meters.

A. The crater has a diameter of about 1.2 km. What is the volume of Meteor Crater?

B. Suppose the diameter of a similarly shaped crater is 1 km. What is the volume of the crater?

A Challenging Problem

EX #7: Solve, check your results.

$$\sqrt{3x+1} - \sqrt{x+1} = 2$$