Area Between Curves

p. 390-393 (7.2)

If f and g are continuous on $[\mathrm{a}, \mathrm{b}]$ and $g(x) \leq f(x)$ bounded by vertical lines $x=a$ and $x=b$, then the area is found by

$$
A=\int_{a}^{b}(f(x)-g(x)) d x
$$

To find the area of a region:

1. Sketch or draw graphs.
2. Determine whether $d x$ or $d y$.
3. Find the limits from the boundaries, axes, or intersections.
4. Set up the integral by Top - Bottom if $d x$ or Right - Left if $d y$.
5. Integrate and evaluate the integral.
${ }^{* *}$. Find the area of the region in the first quadrant that is enclosed by the graphs of $y=x^{3}+8$ and $y=x+8$.
${ }^{* * 2}$. The area of the region bounded by the lines $x=0, x=2$, and $y=0$ and the curve $y=e^{x / 2}$ is \qquad .
**(calc.) FR 3. Find the area of R, the region in the first quadrant enclosed by the graphs of $f(x)=1+\sin (2 x)$ and $g(x)=e^{x / 2}$.
