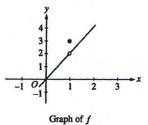

Limits, Continuity and Derivatives For A+ College Ready Prep Sessions


Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. For which of the following does $\lim f(x)$ exist?

The graph of the function f is shown in the figure above. The value of $\lim_{x \to 1} \sin(f(x))$ is

- a. 0.909
- b. 0.841
- c. 0.141
- d. -0.416
- e. nonexistent

7. If the function f is continuous for all real number and if $f(x) = \frac{x^2 - 4}{x + 2}$ when $x \neq 2$, then f(-2)=a. -4 b. -2 c. -1 d. 0 e. 2

8.
$$\lim_{x \to \infty} \frac{x^3 - 2x^2 + 3x - 4}{4x^3 - 3x^2 + 2x - 1} =$$

a. 4
b. 1
c. $\frac{1}{4}$

- d. 0 e. -1

9. For $x \ge 0$, the horizontal line y = 2 is an asymptote for the graph of the function f Which of the following statements must be true?

	a. $f(0) = 2$
2 3 x	b. $f(x) \neq 2$ for all $x \ge 0$
	c. $f(2)$ is undefined
i f	d. $\lim_{x \to 2} f(x) = \infty$
f is shown in the figure	e. $\lim_{x \to \infty} f(x) = 2$
$\sin(f(x))$ is	10. $\lim_{x \to 0} (x \csc x)$ is
	a∞
	b1
	c. 0
	d. 1
	e. ∞
uous for all real numbers	11. If $\lim_{x \to a} f(x) = L$, where L is a real number, which of
en $x \neq 2$, then $f(-2)=$	$x \rightarrow a$ the following must be true?
$x \neq 2$, then $f(-2)$ =	
	a. $f'(a)$ exists.
	b. $f(x)$ is continuous at $x = a$.
	c. $f(x)$ is defined at $x = a$.
	d. $f(a) = L$ e. None of the above
	12.
	The graph of the function f is shown above. Which of the following statements must be false?
	a. $f(a)$ exists. b. $f(x)$ is defined for $0 < x < a$. c. f is not continuous at $x = a$. d. $\lim_{x \to a} f(x)$ exists.
	e. $\lim f'(x)$ exists

e. $\lim_{x \to a} f'(x)$ exists

13.
$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{2 \sin^2 \theta}$$
 is
a. 0
b. $\frac{1}{8}$
c. $\frac{1}{4}$
d. 1
e. nonexistent
14. Let *f* be a function such that $\lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = 5$.
Which of the following must be true?
I. *f* is continuous at x = 2.
II. *f* is differentiable at x = 2.
III. The derivative of *f* is continuous at x = 2.

- a. I only
- b. II only
- c. I and II only
- d. I and III only
- e. II and III only

15.

_

$$f(x) = \begin{cases} x+2 & \text{if } x \le 3\\ 4x-7 & \text{if } x > 3 \end{cases}$$

Let f be the function given above. Which of the following statements are true about f?

I. $\lim_{x \to 3} f(x)$ exists II. *f* is continuous at x = 3. III. *f* is differentiable at x = 3.

- a. None
- b. I only
- c. II only
- d. I and II only
- e. I, II, and III

16. If
$$f(x) = x\sqrt{2x-3}$$
, then $f'(x) =$
a. $\frac{3x-3}{\sqrt{2x-3}}$
b. $\frac{x}{\sqrt{2x-3}}$
c. $\frac{1}{\sqrt{2x-3}}$
d. $\frac{-x+3}{\sqrt{2x-3}}$
e. $\frac{5x-6}{2\sqrt{2x-3}}$
17. If $f(x) = \frac{e^{2x}}{2x}$, then $f'(x) =$
a. 1
b. $\frac{e^{2x}(1-2x)}{2x^2}$
c. e^{2x}
d. $\frac{e^{2x}(2x+1)}{x^2}$
e. $\frac{e^{2x}(2x-1)}{2x^2}$
18. If $y = (x^3+1)^2$, then $\frac{dy}{dx} =$
a. $(3x^2)^2$
b. $2(x^3+1)$
c. $2(3x^2+1)$
d. $3x^2(x^3+1)$
e. $6x^2(x^3+1)$

19. If $f(x) = \sin(e^{-x})$, then $f'(x) =$	22. If $f(x) = \cos(3x)$, then $f'(\frac{\pi}{9}) =$
a. $-\cos(e^{-x})$	a. $\frac{3\sqrt{3}}{2}$
b. $\cos\left(e^{-x}\right) + e^{-x}$	b. $\frac{\sqrt{3}}{2}$
c. $\cos\left(e^{-x}\right) - e^{-x}$	c. $-\frac{\sqrt{3}}{2}$
d. $e^{-x}\cos\left(e^{-x}\right)$	d. $-\frac{3}{2}$
e. $-e^{-x}\cos\left(e^{-x}\right)$	e. $-\frac{3\sqrt{3}}{2}$
20. If $f(x) = \ln(x+4+e^{-3x})$, then $f'(0)$ is	23. $f(x) = \begin{cases} cx+d & \text{for } x \le 2\\ x^2 - cx & \text{for } x > 2 \end{cases}$
a. $-\frac{2}{5}$	$\int (x)^{2} = \begin{cases} x^{2} - cx & \text{for } x > 2 \end{cases}$
b. $\frac{1}{5}$	Let f be the function defined above, where c and d are constants. If f is differentiable at
c. $\frac{1}{4}$	x = 2, what is the value of $c + d$?
	a4 b2
d. $\frac{2}{5}$	c. 0
e. nonexistent	d. 2
	e. 4
$21. \frac{d}{dx}\cos^2\left(x^3\right) =$	24. Let f and g be differentiable functions with the following properties:
a. $6x^2 \sin\left(x^3\right) \cos\left(x^3\right)$	following properties:
b. $6x^2 \cos(x^3)$	(i) $g(x) > 0$ for all x (ii) $f(0) = 1$
c. $\sin^2(x^3)$	If $h(x) = f(x)g(x)$ and $h'(x) = f(x)g'(x)$, then $f(x) =$
d. $-6x^2 \sin\left(x^3\right) \cos\left(x^3\right)$	a. $f'(x)$
	b. $g(x)$
e. $-2\sin\left(x^3\right)\cos\left(x^3\right)$	$c. e^x$
	d. 0
	e. 1

25.

x	f(x)	f'(x)	g(x)	g'(x)
-1	6	5	3	-2
1	3	-3	-1	2
3	1	-2	2	3

The table above gives values of f, f', g, and g' at selected values of x. If h(x) = f(g(x)), then h'(1) =

a. 5

b. 6

c. 9

d. 10

- e. 12
- 26. If $f(x) = e^x$, which of the following is equal to f'(e)?

e.	$\lim_{h \to 0} \frac{e^{e+h} - e^e}{h}$	
d.	$\lim_{h \to 0} \frac{e^{x+h} - 1}{h}$	
c.	$\lim_{h \to 0} \frac{e^{e+h} - e}{h}$	
b.	$\lim_{h \to 0} \frac{e^{x+h} - e^e}{h}$	
a.	$\lim_{h \to 0} \frac{e^{x+h}}{h}$	

27. If
$$y = 2\cos\left(\frac{x}{2}\right)$$
, then $\frac{d^2y}{dx^2} =$

a.
$$-8\cos\left(\frac{x}{2}\right)$$

b. $-2\cos\left(\frac{x}{2}\right)$
c. $-\sin\left(\frac{x}{2}\right)$
d. $-\cos\left(\frac{x}{2}\right)$
e. $-\frac{1}{2}\cos\left(\frac{x}{2}\right)$

GRAPHIC ORGANIZER FOR BIG THEOREMS Hypotheses INTERMEDIATE VALUE THEOREM Conculusions Picture Hypotheses Mean Value Theorem Conculusions Picture EXTREME VALUE THEOREM Hypotheses Conculusions Picture CANDIDATES' TEST