Calculus 1 Worksheet 7

3 - Part Definition of Continuity

Show (THREE STEPS) that each of the following functions is either continuous or discontinuous at the given value of x.

1. $f(\mathrm{x})=\mathrm{x}+5$ at $\mathrm{x}=1$	2. $f(\mathrm{x})=x^{2}+2 x-1$ at $\mathrm{x}=0$
3. $f(\mathrm{x})=\frac{x^{2}-16}{x-4}$ at $\mathrm{x}=4$	4. $f(\mathrm{x})=\frac{x^{2}-25}{x+5}$ at $\mathrm{x}=5$
5. $f(\mathrm{x})=[\mathrm{x}]$ at $\mathrm{x}=2$	6. $f(\mathrm{x})=\frac{\|x+1\|}{x}$ at $\mathrm{x}=2$
7. $f(\mathrm{x})=\frac{1}{x}$ at $\mathrm{x}=3$	8. $f(\mathrm{x})=\frac{3 x-1}{2 x+6} \quad$ at $\mathrm{x}=-3$

State whether each function is continuous or discontinuous for all x. Justify your answer.

9. $f(\mathrm{x})=x^{2}+2$	10. $f(\mathrm{x})=\frac{1}{x}$
11. $f(\mathrm{x})=\frac{x^{2}+1}{x-1}$	12. $f(\mathrm{x})=\|\mathrm{x}-1\|$

Each of the following has point discontinuity. Assign values to $\boldsymbol{f}(\mathbf{x})$ that remove the discontinuity.

13. $f(\mathrm{x})=\frac{x^{2}-4}{x-2}$	14. $f(\mathrm{x})=\frac{x^{2}-5 x+6}{x-3}$
15. $f(\mathrm{x})=\frac{x^{2}-5}{x-\sqrt{5}}$	16. $f(\mathrm{x})=\frac{x^{3}+8}{x+2}$

Give the open interval(s) for which each function is continuous.

$$
\begin{array}{|l|l}
\hline \text { 17. } f(\mathrm{x})=\frac{3 x-5}{2 x^{2}-x-3} & \text { 18. } f(\mathrm{x})=\sqrt{2 x-3}+x^{2} \\
\hline
\end{array}
$$

