Calculus 1 Worksheet 7 3 – Part Definition of Continuity

<u>Show</u> (THREE STEPS) that each of the following functions is either continuous or discontinuous at the given value of x.

1 . $f(x) = x + 5$ at $x = 1$	2. $f(\mathbf{x}) = x^2 + 2x - 1$ at $\mathbf{x} = 0$
3. $f(x) = \frac{x^2 - 16}{x - 4}$ at $x = 4$	4. $f(x) = \frac{x^2 - 25}{x + 5}$ at $x = 5$
5. $f(x) = [x]$ at $x = 2$	6. $f(x) = \frac{ x+1 }{x}$ at $x = 2$
7. $f(x) = \frac{1}{x}$ at $x = 3$	8. $f(x) = \frac{3x-1}{2x+6}$ at $x = -3$

State whether each function is continuous or discontinuous for all x. Justify your answer.

9 . $f(\mathbf{x}) = x^2 + 2$	10. $f(\mathbf{x}) = \frac{1}{x}$
11. $f(\mathbf{x}) = \frac{x^2 + 1}{x - 1}$	12 . $f(\mathbf{x}) = \mathbf{x} - 1 $

Each of the following has point discontinuity. Assign values to $f(\mathbf{x})$ that remove the discontinuity.

13. $f(\mathbf{x}) = \frac{x^2 - 4}{x - 2}$	14. $f(\mathbf{x}) = \frac{x^2 - 5x + 6}{x - 3}$
15. $f(\mathbf{x}) = \frac{x^2 - 5}{x - \sqrt{5}}$	16. $f(\mathbf{x}) = \frac{x^3 + 8}{x + 2}$

Give the open interval(s) for which each function is continuous.

17.
$$f(\mathbf{x}) = \frac{3x-5}{2x^2-x-3}$$
 18. $f(\mathbf{x}) = \sqrt{2x-3} + x^2$