Calc 1 Worksheet \#41

Approximating Areas using Reimann Sums

1 Approximate the area under $y=(x-1)^{2}$ on [0,4] using
(a) 4 rectangles whose height is given using the left endpoint
(b) 4 rectangles whose height is given using the right endpoint
(c) 4 rectangles whose height is given using the midpoint
(d) 4 trapezoids.
(e) Evaluate the integral directly.

2 Approximate the area under $\mathrm{y}=\mathrm{x}^{2}-1$ on [0,4] using
(a) 4 rectangles whose height is given using the left endpoint
(b) 4 rectangles whose height is given using the right endpoint
(c) 4 rectangles whose height is given using the midpoint
(d) 4 trapezoids
(e) (e) Evaluate the integral directly.

3 Approximate to 3 decimal places the integral $\int_{0}^{4} \sqrt{x}$ with 4 equal intervals using:
a) rectangles whose height is the right-hand endpoint
b) rectangles whose height is the left-hand endpoint
c) rectangles whose height is the midpoint of the interval
d) trapezoids (trapezoidal rule)
e) Evaluate the integral directly.

4 Approximate the area under $\mathrm{y}=(\mathrm{x}+1)^{2}$ on [0,4$]$ using
(a) 4 rectangles whose height is given using the left endpoint,
(b) 4 rectangles whose height is given using the right endpoint,
(c) 4 rectangles whose height is given using the midpoint, and
(d) 4 trapezoids.
(e) Evaluate the integral directly.

5 If a chart of values for $f(x)=$

x	-3	0	3	6	9	12	15
$\mathrm{~F}(\mathrm{x})$	-1	0	1	3	1	0	-1

Find a trapezoidal approximation of $\int_{-3}^{15} f(t) d t$ using six subintervals of length $\Delta t=3$
6 If $3 x^{2}+2 x y+y^{2}=2$, then the value of $\frac{d y}{d x}$ at $x=1$ is
$7 \quad$ If $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}2 x & \text { for } x \leq 1 \\ 3 x^{2}-1 & \text { for } x>1\end{array}\right.$ then find $\int_{0}^{2} f(x) d x$.
$8 \quad$ If $\mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3}$, what is $\frac{d V}{d r}$ when $\mathrm{r}=3$?

9	If $\mathrm{f}(\mathrm{x})=\mathrm{x} \cos \frac{1}{\mathrm{x}}$, then $\mathrm{f}^{\prime}\left(\frac{2}{\pi}\right)=$
10	$=$

$10 \lim _{x \rightarrow 4} \frac{x^{3}-4 x^{2}-x+4}{x-4}$
11 The solution set of $\frac{7}{x^{2}+8 x+23}=1$ is
12
Why does $\mathrm{f}(\mathrm{x})=\frac{x^{2}-4 x}{x-2}$ on $[0,4] \underline{\text { not }}$ satisfy the hypotheses of Rolle's Theorem?

Calc 1 Worksheet \#41

Approximating Areas using Reimann Sums
13 Find c for the Mean Value Theorem if $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{2}+1$ in $[1,3]$.
14 A function f that is continuous for all real numbers x has $f(3)=-1$ and $f(7)=1$.
If $f(\mathrm{x})=0$ for exactly one value of x , then which of the following could be x ?
A) -1
B) 0
C) 1
D) 4
E) 9

Answers:
\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline 1 & 2 & 3 & 4 & 5 \\
\text { a) } 6 & \text { a) } 12 & \text { a) } 30 \\
\text { b) } 14 \\
\text { c) } 9 \\
\text { d) } 10 \\
\text { e) } 28 / 3 & \text { c) } 37 / 2 \\
\text { d) } 19 \\
\text { e) } 56 / 3 & \text { b } 4.146 \\
\text { c) } 5.384 \\
\text { d) } 5.146 \\
\text { e) } 5.333\end{array}
$$ \quad \begin{array}{l}b) 54

c) 41

d) 42

e) \frac{124}{3}\end{array}\right]\)| $9 \frac{\pi}{2}$ |
| :--- |

