AP Calculus ~ Semester I Review Part 3

All problems are to be worked without a calculator unless otherwise noted.

Velocity and Acceleration

1. A particle moves along the x-axis so that its position at time t, is given by $x(t) = t^2 - 8t + 7$. For what values of t is the velocity zero?

- 2. Given $v(t) = -t^3 + 4t^2 + 3t 5$.
- a) Find the maximum velocity $0 \le t \le 4$

$$f(0) = -5$$

 $f(4) = 7$
 $f(3) = 13$
 $f(-\frac{1}{3})$ Not on interval

$$3t^2-8t-3=0$$
 $(3t+13)(3t-3)=0$
 $t-3=0$ $t-3=0$ $t=3$
b) Find the maximum acceleration on the interval, $0 \le t \le 4$.

$$a'(t)=0$$
 Changes from + tones
 $a(t)=-3t^2+8t+3$
 $a'(t)=-6t+8=0$ $t=\frac{4}{3}$

$$a(0)=3$$

 $a(4)=-77$
 $a(\frac{4}{3})=-13$

3. Use the graph and the table below to answer the following: (Usage of a calculator is allowed on this problem.)

a) During what intervals is acceleration negative? (Justify.)

b) Find the average acceleration in $\frac{ft}{s^2}$ for $0 \le t \le 12$. (Show your computation and justify your answer.)

$$\frac{V(12)-V(0)}{12-0} = \frac{11-0}{12} = \frac{11}{12} + \frac{1}{82}$$

c) Approximate the acceleration in $\frac{ft}{s^2}$ at t = 8.

(Show your computation and justify your answer.)

(Show your computation and justify your answer.)
$$\frac{V(0) - V(6)}{10 - 6} = \frac{8 - 12}{4} = \frac{-4}{4} = -1 \text{ ft/s}^2$$

t (seconds)	v(t) (ft per second)
0	0
2	5
4	10
6	12
8	10
10	8
12	11
14	16
16	18
18	15
20	8

For problems 4-6, use calculus to answer each question.	Show all work on separate sheet of paper.
A calculator may be necessary.	

- 4. A particle moves along the x-axis so that its position is given by $s(t) = 3 \cos t$ for $0 \le t < 6.28$.
- a) Find the position of the particle at 3 seconds. $5(3) = 3\cos(3) = -2.97$
- b) List intervals on which the particle is to the left of the origin.

S(t) < 0 $(\frac{\pi}{2}, \frac{3\pi}{2})$ c) Find a function tnat describes the velocity of the particle.

5(t)=v(t)=-3 sint

d) Find the velocity of the particle at 3 seconds. $V(3) = -3 \sin(3) = -.43$ e) List intervals on which the function is moving to the right.

b) Elst intervals on which the function is moving to the right. v(t) > 0 (π , 2π)

f) What is the average velocity of the particle between t = 1 and t = 4? $\frac{5(4) - 5(1)}{4 - 1} = -1.194 \text{ m/s}$

- g) At what time is the instantaneous velocity of the particle equal to this average? S'(t) = S(4) S(1) + (1) + (1) + (2) + (3) + (4) +

Left of origin, decelerating because the particle is getting ready tota 5. A particle moves along the x-axis so that its position is given by $s(t) = x^3 - x^2 - 6x$ in cm per second for 0

- < t < 15 seconds.
- a) Find the position of the particle at 12 seconds.
- b) List intervals on which the particle is to the right of the origin.
- c) Find a function that describes the velocity of the particle.
- d) Find the velocity of the particle at 12 seconds.
- e) List intervals on which the function is moving to the left.
- f) Find a function that describes the acceleration of the particle.
- g) Find the acceleration of the particle at 12 seconds.
- h) List intervals on which the particle is decelerating.
- i) Summarize the particles position and movement at t = 12.

6. An object is thrown vertically upward at a rate of 5 ft per second, from the top of a 200 ft tower.

a) Write a function that describes its position. $\{s(t) = 200 + 5t - 16t^2\}$

- b) What is the average velocity of the function on [1, 4]?
- c) Find the maximum height and the time at which it occurs.
- d) At what time will the object strike the ground?
- e) Find a function that describes the velocity of the object.
- f) At what time, on the closed interval of the problem situation will the object reach its maximum velocity? What is its maximum velocity?
- g) What initial velocity would be necessary for the object to reach a maximum height of 500 feet?