Approximate areas "under the curve" (between the curve and the *x*-axis) using four subintervals for left, right and midpoint rectangles and trapezoids. Find the area using the definite integral.

- 1. $f(x) = x^2$ on [0,2]
 - a) Left Rectangular Approximation with graph
 - b) Right Rectangular Approximation with graph
 - c) Midpoint Rectangular Approximation with graph
 - d) Trapezoidal Approximation with graph
 - e) Exact area using definite integrals with graph

Approximate areas "under the curve" (between the curve and x-axis) using the indicated Riemann Sum.

- 2. $f(x) = -x^2$ on [0,2]
 - a) Find a Trapezoidal Approximation with **graph** using four subintervals.
 - b) Is the approximation found in part (a) an overestimate or underestimate? Explain how you know in terms of the concavity (curvature) of the graph.
 - c) Find the exact area using a definite integral with graph.
- 3. $f(x) = \sin x$ on $[0, \pi]$
 - a) Find a Right Rectangular Approximation with **graph** using four subintervals.
 - b) Is the approximation found in part (a) an overestimate or underestimate? Explain how you know in terms of the concavity (curvature) of the graph.
 - c) Find the exact area using a definite integral with **graph**.
- 4. $f(x) = \sqrt{x}$ on [0,4]
 - a) Find a Left Rectangular Approximation with **graph** using four subintervals.
 - b) Is the approximation found in part (a) an overestimate or underestimate? Explain how you know in terms of the concavity (curvature) of the graph.
 - c) Find the exact area using a definite integral with **graph**.
- 5. Consider the continuous function f(x) such that f(x) > 0 for [0,1]. Selected values of f(x) are given in the table below. Use the table of values to approximate the area under f(x) using the Riemann Sum indicated.

Х	0	0.25	0.5	0.75	1.0
f(x)	1.0	0.8	1.3	1.1	1.6

- a) Trapezoidal Approximation using 4 subintervals
- b) Right Rectangular Approximation using 4 subintervals
- c) Midpoint Rectangular Approximation using 2 subintervals