Average Rate of Change

p. 87-91 (2.4)

The average rate of change of a function over an interval is:

1. $\frac{\text { amount of change }}{\text { length of interval }}=\frac{\Delta y}{\Delta x}=\frac{\mathrm{d} y}{\mathrm{~d} x}$
2. Slope of the secant line through 2 points.
3. $\frac{f(b)-f(a)}{b-a}$ for $[\mathrm{a}, \mathrm{b}]$
4. In an experiment of population of bacteria, find the average rate of change from P to Q and draw in the secant line.

**(FR, calc.) 2. Traffic flow $F(t)$ is defined as the rate at which cars pass through an intersection, measured in cars per minute and t is in minutes. The traffic flow at an intersection is modeled by the function F defined by $F(t)=82+4 \sin \left(\frac{t}{2}\right)$ for $0 \leq t \leq 30$. What is the average rate of change of the traffic flow over the time interval $10 \leq t \leq 15$? Indicate units of measure.
5. Use the table below, where $f(t)$ is a population and t is a time, to
a) estimate $f^{\prime}(1870)$
b) interpret the meaning of your answer.

$t(y r)$	1850	1860	1870	1880
$\mathrm{f}(\mathrm{t})$ (mil1ions)	23.1	31.4	38.6	50.2

