AP Calculus AB Formulas & Justifications

	Limits at Infinity:	
	To find $\lim_{x \to \pm \infty} f(x)$ think	
1	Top Heavy \Rightarrow limit is $\pm\infty$	
	Bottom Heavy \Rightarrow limit is 0	
	Equal \Rightarrow limit is ratio of coefficients	
	Limits with Infinity (at vertical asymptotes):	
2	When finding a one-sided limit at a vertical asymptote,	
	the answer is either $\pm\infty$.	
	<i>Justifying</i> that a function is continuous at a point:	
	f is continuous at c iff:	
3	1. $f(c)$ is defined	
	2. $\lim_{x \to c} f(x)$ exists	
	3. $f(c) = \lim_{x \to c} f(x)$	
	Definition of the Derivative:	
4	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$	
	$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ (Alternate form for a derivative at a given value.)	
	<i>Justifying</i> that a derivative exists at a point, c:	
5	Show algebraically that $\lim_{x\to c^-} f'(x) = \lim_{x\to c^+} f'(x)$.	
	Average Rate of Change of f on [a, b]:	
6	a.r.c. = $\frac{f(b) - f(a)}{b - a}$ (algebra slope of $\frac{\Delta y}{\Delta x}$) (slope of secant line)	
	Instantaneous Rate of Change of f at a :	
7	f'(a) (derivative at the given value) (slope of tangent line)	
	Average Rate of Change of f on $[a, b]$: a.r.c. = $\frac{f(b) - f(a)}{b - a}$ (algebra slope of $\frac{\Delta y}{\Delta x}$) (slope of secant line) Instantaneous Rate of Change of f at a :	

	Power Rule:		
8	4		
	$\frac{d}{dx} \left[x^n \right] = nx^{n-1}$		
	Common Derivatives to Remember:		
9	$d \begin{bmatrix} 1 \end{bmatrix} -1$ $d \begin{bmatrix} -1 \end{bmatrix}$		
	$\frac{d}{dx} \begin{bmatrix} \frac{1}{x} \end{bmatrix} = \frac{-1}{x^2} \qquad \qquad \frac{d}{dx} \begin{bmatrix} \sqrt{x} \end{bmatrix} = \frac{1}{2\sqrt{x}}$		
	Trig Function Derivatives:		
10	$\frac{d}{dx}[\sin x] = \cos x \qquad \qquad \frac{d}{dx}[\cos x] = -\sin x$		
	$\frac{d}{dx}[\tan x] = \sec^2 x \qquad \qquad \frac{d}{dx}[\cot x] = -\csc^2 x$		
	$\frac{d}{dx}[\sec x] = \sec x \tan x \qquad \qquad \frac{d}{dx}[\csc x] = -\csc x \cot x$		
	Derivatives of Inverse Trig Functions:		
11	$\frac{d}{dx}[\arcsin x] = \frac{1}{\sqrt{1 - x^2}} \qquad \qquad \frac{d}{dx}[\arccos x] = \frac{-1}{\sqrt{1 - x^2}}$		
	$\frac{d}{dx}[\arctan x] = \frac{1}{1+x^2} \qquad \qquad \frac{d}{dx}[\operatorname{arc} \cot x] = \frac{-1}{1+x^2}$		
	$\frac{d}{dx}[\operatorname{arc}\operatorname{sec} x] = \frac{1}{ x \sqrt{x^2 - 1}} \qquad \qquad \frac{d}{dx}[\operatorname{arc}\operatorname{csc} x] = \frac{-1}{ x \sqrt{x^2 - 1}}$		
	Derivatives of Exponential and Logarithmic Functions:		
12	$\frac{d}{dx}[\ln x] = \frac{1}{x}, \ x > 0 \qquad \qquad \frac{d}{dx}[\log_a x] = \frac{1}{x \ln a}$		
	$\frac{d}{dx}[e^x] = e^x \qquad \qquad \frac{d}{dx}[a^x] = a^x \ln a$		
	<u>Justifications</u> for horizontal tangent lines:		
13	$f(x)$ has horizontal tangents when $\frac{dy}{dx} = 0$.		

	Chain Rule:	
14	$\frac{dy}{dx} = \frac{dy}{du} \bullet \frac{du}{dx} \qquad \qquad \frac{d}{dx} \left[f(g(x)) \right] = f'(g(x)) \bullet g'(x)$	
15	Product Rule: $\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$	
16	Quotient Rule: $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{\left[g(x)\right]^2}$	
17	Derivatives of Inverse Functions: The derivative of an inverse function is the reciprocal of the derivative of the original function at the "matching" point. If (a, b) is on $f(x)$, then (b, a) is on $f^{-1}(x)$ and $(f^{-1})'(b) = \frac{1}{f'(a)}$.	
18	$\frac{f(a)}{Justifications}$ for horizontal tangent lines: $f(x)$ has vertical tangents when $\frac{dy}{dx}$ is undefined.	
19	JustificationsParticle is moving right/up because $v(t) > 0$ (positive).Particle is moving left/down because $v(t) < 0$ (negative).Particle is speeding up (velocity is getting bigger) because $v(t)$ and $a(t)$ have same sign.Particle is slowing down (velocity is getting smaller) because $v(t)$ and $a(t)$ have different signs.	
20	Intermediate Value Theorem: If f is continuous on $[a, b]$ and k is any number between $f(a)$ and $f(b)$, then there is at least one number c between a and b such that $f(c) = k$.	
21	Extreme Value Theorem: If <i>f</i> is continuous on the closed interval [a, b], then <i>f</i> has both a minimum and a maximum on the closed interval [a, b].	

	Tratification for an Alexandre For
	<u>Justification</u> for an Absolute Extrema.
22	1. Find critical numbers.
	2. Identify endpoints.
	3. Find $f(critical numbers)$ and $f(endpoints)$.
	4. Determine absolute max/min values by comparing the y-values. State in a
	sentence.
	Mean Value Theorem:
	If f is continuous on [a, b] and differentiable on (a, b) then there exists a
23	number c on (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.
	(Calculus slope = Algebra Slope)
	Rolle's Theorem:
24	If f is continuous on [a, b] and differentiable on (a, b) and if $f(a) = f(b)$,
	then there exists a number c on (a, b) such that $f'(c) = 0$.
	<u>Justification</u> for a Critical Number:
25	x = c is a critical number because $f'(x) = 0$ or $f'(x)$ is undefined.
	Justification for Increasing/Decreasing Intervals:
26	Inc: $f(x)$ is increasing on [,] b/c $f'(x) > 0$.
	Dec: $f(x)$ is decreasing on [,] b/c $f'(x) < 0$.
	<u>Justification</u> for a Relative Max/Min Using 1^{st} Derivative Test:
27	Local Max: $f'(x)$ changes from + to
21	
	Local Min: $f'(x)$ changes from - to +.
	Tustification for Polativa Max/Min Llaina 2 nd Donivativa Teaty
	<u>Justification</u> for Relative Max/Min Using 2 nd Derivative Test:
28	Local Max: $f'(c) = 0$ (or und) and $f''(x) < 0$.
	Local Min: $f'(c) = 0$ (or und) and $f''(x) > 0$.

	<u>Justification</u> for a Point of Inflection:		
29	Using 2 nd derivative: $f''(x) = 0$ (or dne) AND $f''(x)$ changes sign.		
	Using 1 st derivative: $f''(x) = 0$ (or dne) AND slope of $f'(x)$ changes sign.		
	Justification for Concave Up/Concave Dowr	1:	
30	Concave Up: $f(x)$ is concave up on (,) because $f''(x) > 0$.	
	Concave Down: $f(x)$ is concave down	on (,) because $f''(x) < 0$.	
	Justifications for linear approximation estimates:		
31	A linear approximation (tangent line) concave down. A linear approximation (tangent line) concave up.		
Integration Rules:			
	$\int x^n dx = \frac{1}{n+1} x^{n+1} + C$	$\int \cos x dx = \sin x + C$	
	$\int \cos(kx) dx = \frac{1}{k} \sin(kx) + C$	$\int \sin x dx = -\cos x + C$	
	$\int \sin(kx) dx = -\frac{1}{k} \cos(kx) + C$	$\int \sec^2 x dx = \tan x + C$	
32	$\int \csc^2 x dx = -\cot x + C$	$\int \sec x \tan x dx = \sec x + C$	
	$\int \csc x \cot x dx = -\csc x + C$	$\int \frac{1}{x} dx = \ln x + C$	
	$\int \tan x dx = -\ln \left \cos x \right + C$	$\int e^x dx = e^x + C$	
	$\int e^{kx} dx = \frac{1}{k} e^{kx} + C$	$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + C$	

	Turtification of an Deimann Commu	
	<u>Justifications</u> for Reimann Sums:	
	Left-Riemann Sums:	
	The sum is an overestimate if the curve is decreasing.	
33	The sum is an <i>underestimate</i> if the curve is increasing.	
	Dicht Diemenn Suma	
	Right-Riemann Sums: The sum is an <i>overestimate</i> if the curve is increasing.	
	The sum is an <i>underestimate</i> if the curve is decreasing.	
	First Fundamental Theorem of Calculus:	
24	$\int_{a}^{b} f(x) dx = f(x) - f(x)$	
34	$\int_{a}^{b} f'(x)dx = f(b) - f(a)$	
	(Finds the signed area between a curve and the x-axis)	
	Properties of Integrals:	
	$\int_{a}^{b} f(x) + g(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$	
	$\int_{a}^{b} f(x) - g(x)dx = \int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx$	
35	$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx$	
	$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$	
	$\int_{a}^{a} f(x)dx = 0$	
	Ja	
	Average Value of a Function:	
36	$f_{avg} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$	
	v - u - u	
	Second Fundamental Theorem of Calculus:	
37	d c x $d c g(x)$	
	$\frac{d}{dx}\int_{a}^{x} f(t)dt = f(x) \qquad \qquad \frac{d}{dx}\int_{a}^{g(x)} f(t)dt = f(g(x)) \bullet g'(x)$	

	"Net Change" Theorem:	
38	$\int_{a}^{b} f(x) dx$ represents the "net change" in the function f from time a to b.	
	Finding Total Amount:	
39	$f(b) = f(a) + \int_{a}^{b} f'(x) dx$ (want = have + integral)	
	Steps for Solving Differential Equations:	
40	"Find a solution (or solve) the separable differentiable equation" 1. Separate the variables 2. Integrate each side	
	 Make sure to put C on side with independent variable (normally x) Plug in initial condition and solve for C (if given) 	
	5. Solve for the dependent variable (normally y)	
	Exponential Growth and Decay:	
41	"The rate of change of a quantity is directly proportional to that quantity"	
	Gives the differential equation: $\frac{dy}{dt} = ky$ Which can be solved to yield: $y = Ce^{kt}$	

	Particle Motion Formulas:	
42	Velocity: $v(t) = s'(t)$ Acceleration: $a(t) = v'(t) = s''(t)$ Speed:speed = $ v(t) $ Average Velocity:(given $s(t)$) $\frac{s(b) - s(a)}{b - a}$ (given $v(t)$) $\frac{1}{b - a} \int_{a}^{b} v(t) dt$ Average Acceleration:(given $v(t)$) $\frac{v(b) - v(a)}{b - a}$ (given $a(t)$) $\frac{1}{b - a} \int_{a}^{b} a(t) dt$ Displacement: $\int_{a}^{b} v(t) dt$ Total Distance: $\int_{a}^{b} v(t) dt$ Position at b: $s(b) = s(a) + \int_{a}^{b} v(t) dt$	
43	Areas in a Plane:Perpendicular to x-axis: $\int_{a}^{b} [f(x) - g(x)] dx$ $f(x)$ is top curve, $g(x)$ is bottom curve, a and b are x-coordinates ofpoint of intersectionPerpendicular to y-axis: $\int_{a}^{b} [f(y) - g(y)] dy$ $f(y)$ is right curve, $g(y)$ is left curve, a and b are y-coordinates ofpoint of intersection	
44	Steps to Finding Volume: Volume = $\int Area$ 1. decide on whether it's a dx or dy 2. find a formula for the area in terms of x or y 3. find the limits (making sure they match x or y) 4. integrate and evaluate	

	Volumes Around a Horizontal Axis of Rotation or Perpendicular to x-axis:		
	Disc: $V = \int_{a}^{b} \pi r^{2} dx$	a and b are x-coordinates	
45	Washer: $V = \int_{a}^{b} \left[\pi R^2 - \pi r^2 \right] dx$	a and b are x-coordinates	
	Slab (Cross Section): $V = \int_{a}^{b} A(x) dx$	A(x) is the area formula for the	
		cross section	
	Volumes Around a Vertical Axis of Rotation or Perpendicular to y-axis:		
	Disc: $V = \int_{a}^{b} \pi r^{2} dy$	a and b are y-coordinates	
46	Washer: $V = \int_{a}^{b} \left[\pi R^2 - \pi r^2 \right] dy$	a and b are y-coordinates	
	Slab (Cross Section): $V = \int_{a}^{b} A(y) dy$	A(y) is the area formula for the	
		cross section	