1	Limits at Infinity: To find $\lim _{x \rightarrow \pm \infty} f(x)$ think Top Heavy \Rightarrow limit is $\pm \infty$ Bottom Heavy \Rightarrow limit is 0 Equal \Rightarrow limit is ratio of coefficients
2	Limits with Infinity (at vertical asymptotes): When finding a one-sided limit at a vertical asymptote, the answer is either $\pm \infty$.
3	Justifying that a function is continuous at a point: f is continuous at c iff: 1. $f(c)$ is defined 2. $\lim _{x \rightarrow c} f(x)$ exists 3. $f(c)=\lim _{x \rightarrow c} f(x)$
4	Definition of the Derivative: $\begin{aligned} & f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\ & f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \quad \text { (Alternate form for a derivative at a given value.) } \end{aligned}$
5	Justifying that a derivative exists at a point, c : Show algebraically that $\lim _{x \rightarrow x^{-}} f^{\prime}(x)=\lim _{x \rightarrow c^{+}} f^{\prime}(x)$.
6	Average Rate of Change of f on $[a, b]$: $\text { a.r.c. } \left.=\frac{f(b)-f(a)}{b-a} \quad \text { (algebra slope of } \frac{\Delta y}{\Delta x}\right) \quad \text { (slope of secant line) }$
7	Instantaneous Rate of Change of f at a : $f^{\prime}(a) \quad$ (derivative at the given value) (slope of tangent line)

	Power Rule:
8	$\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$
9	Common Derivatives to Remember: $\frac{d}{d x}\left[\frac{1}{x}\right]=\frac{-1}{x^{2}} \quad \frac{d}{d x}[\sqrt{x}]=\frac{1}{2 \sqrt{x}}$
10	Trig Function Derivatives:
11	Derivatives of Inverse Trig Functions: $\begin{array}{ll} \frac{d}{d x}[\arcsin x]=\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x}[\arccos x]=\frac{-1}{\sqrt{1-x^{2}}} \\ \frac{d}{d x}[\arctan x]=\frac{1}{1+x^{2}} & \frac{d}{d x}[\operatorname{arccot} x]=\frac{-1}{1+x^{2}} \\ \frac{d}{d x}[\operatorname{arcsec} x]=\frac{1}{\|x\| \sqrt{x^{2}-1}} & \frac{d}{d x}[\operatorname{arccsc} x]=\frac{-1}{\|x\| \sqrt{x^{2}-1}} \end{array}$
12	Derivatives of Exponential and Logarithmic Functions: $\begin{array}{ll} \frac{d}{d x}[\ln x]=\frac{1}{x}, x>0 & \frac{d}{d x}\left[\log _{a} x\right]=\frac{1}{x \ln a} \\ \frac{d}{d x}\left[e^{x}\right]=e^{x} & \frac{d}{d x}\left[a^{x}\right]=a^{x} \ln a \end{array}$
13	Justifications for horizontal tangent lines: $f(x)$ has horizontal tangents when $\frac{d y}{d x}=0$.

14	Chain Rule: $\frac{d y}{d x}=\frac{d y}{d u} \bullet \frac{d u}{d x} \quad \frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) \bullet g^{\prime}(x)$		
15	Product Rule: $\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)$		
16	Quotient Rule: $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$		
17	Derivatives of Inverse Functions: The derivative of an inverse function is the reciprocal of the derivative of the original function at the "matching" point. If (a, b) is on $f(x)$, then (b, a) is on $f^{-1}(x)$ and $\left(f^{-1}\right)^{\prime}(b)=\frac{1}{f^{\prime}(a)}$.		
18	Justifications for horizontal tangent lines: $f(x)$ has vertical tangents when $\frac{d y}{d x}$ is undefined.		
19	Justifications for Particle Motion: Particle is moving right/up because $v(t)>0$ (positive). Particle is moving left/down because $v(t)<0$ (negative). Particle is speeding up (\|velocity	is getting bigger) because $v(t)$ and $a(t)$ have same sign. Particle is slowing down (\|velocity	is getting smaller) because $v(t)$ and $a(t)$ have different signs.
20	Intermediate Value Theorem: If f is continuous on [a,b] and k is any number between $f(a)$ and $f(b)$, then there is at least one number c between a and b such that $f(c)=k$.		
21	Extreme Value Theorem: If f is continuous on the closed interval $[a, b]$, then f has both a minimum and a maximum on the closed interval $[a, b]$.		

22	Justification for an Absolute Extrema. 1. Find critical numbers. 2. Identify endpoints. 3. Find f (critical numbers) and f (endpoints). 4. Determine absolute max/min values by comparing the y-values. State in a sentence.
23	Mean Value Theorem: If f is continuous on $[a, b]$ and differentiable on (a, b) then there exists a number c on (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$. (Calculus slope $=$ Algebra Slope)
24	Rolle's Theorem: If f is continuous on [a, b] and differentiable on (a, b) and if $f(a)=f(b)$, then there exists a number c on (a, b) such that $f^{\prime}(c)=0$.
25	Justification for a Critical Number: $x=c$ is a critical number because $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined.
26	Justification for Increasing/Decreasing Intervals: Inc: $f(x)$ is increasing on \qquad , \qquad]b/c $f^{\prime}(x)>0$. Dec: $f(x)$ is decreasing on \qquad ,]b/c $f^{\prime}(x)<0$.
27	Justification for a Relative Max/Min Using $1^{\text {st }}$ Derivative Test: Local Max: $f^{\prime}(x)$ changes from + to -. Local Min: $f^{\prime}(x)$ changes from - to +.
28	Justification for Relative Max/Min Using $2^{\text {nd }}$ Derivative Test: Local Max: $f^{\prime}(c)=0$ (or und) and $f^{\prime \prime}(x)<0$. Local Min: $\quad f^{\prime}(c)=0$ (or und) and $f^{\prime \prime}(x)>0$.

	Justification for a Point of Inflection:
29	Using $2^{\text {nd }}$ derivative: $f^{\prime \prime}(x)=0$ (or dne) AND $f^{\prime \prime}(x)$ changes sign. Using $1^{\text {st }}$ derivative: $f^{\prime \prime}(x)=0$ (or dne) AND slope of $f^{\prime}(x)$ changes sign.
30	Justification for Concave Up/Concave Down: Concave Up: $f(x)$ is concave up on \qquad , \qquad) because $f^{\prime \prime}(x)>0$. Concave Down: $f(x)$ is concave down on \qquad , __) because $f^{\prime \prime}(x)<0$.
31	Justifications for linear approximation estimates: A linear approximation (tangent line) is an overestimate if the curve is concave down. A linear approximation (tangent line) is an underestimate if the curve is concave up.
32	Integration Rules: $\begin{array}{ll} \int x^{n} d x=\frac{1}{n+1} x^{n+1}+C & \int \cos x d x=\sin x+C \\ \int \cos (k x) d x=\frac{1}{k} \sin (k x)+C & \int \sin x d x=-\cos x+C \\ \int \sin (k x) d x=-\frac{1}{k} \cos (k x)+C & \int \sec ^{2} x d x=\tan x+C \\ \int \csc ^{2} x d x=-\cot x+C & \int \sec x \tan x d x=\sec x+C \\ \int \csc x \cot x d x=-\csc x+C & \int \frac{1}{x} d x=\ln \|x\|+C \\ \int \tan x d x=-\ln \|\cos x\|+C & \int e^{x} d x=e^{x}+C \\ \int e^{k x} d x=\frac{1}{k} e^{k x}+C & \int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C \end{array}$

33	Justifications for Reimann Sums: Left-Riemann Sums: The sum is an overestimate if the curve is decreasing. The sum is an underestimate if the curve is increasing. Right-Riemann Sums: The sum is an overestimate if the curve is increasing. The sum is an underestimate if the curve is decreasing.
34	First Fundamental Theorem of Calculus: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$ (Finds the signed area between a curve and the x-axis)
35	Properties of Integrals: $\begin{aligned} & \int_{a}^{b} f(x)+g(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x \\ & \int_{a}^{b} f(x)-g(x) d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x \\ & \int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x \\ & \int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x \\ & \int_{a}^{a} f(x) d x=0 \end{aligned}$
36	Average Value of a Function: $f_{\text {avg }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$
37	Second Fundamental Theorem of Calculus: $\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x) \quad \frac{d}{d x} \int_{a}^{g(x)} f(t) d t=f(g(x)) \bullet g^{\prime}(x)$

38	"Net Change" Theorem: $\int_{a}^{b} f(x) d x$ represents the "net change" in the function f from time a to b .
39	Finding Total Amount: $f(b)=f(a)+\int_{a}^{b} f^{\prime}(x) d x \quad(\text { want }=\text { have }+ \text { integral })$
40	Steps for Solving Differential Equations: "Find a solution (or solve) the separable differentiable equation..." 1. Separate the variables 2. Integrate each side 3. Make sure to put C on side with independent variable (normally x) 4. Plug in initial condition and solve for C (if given) 5. Solve for the dependent variable (normally y)
41	Exponential Growth and Decay: "The rate of change of a quantity is directly proportional to that quantity" Gives the differential equation: $\frac{d y}{d t}=k y$ Which can be solved to yield: $y=C e^{k t}$

42	Particle Motion Formulas: Velocity: $v(t)=s^{\prime}(t)$ Acceleration: $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)$ Speed: $\text { speed }=\|v(t)\|$ Average Velocity: (given $s(t)$) $\frac{s(b)-s(a)}{b-a}$ $\operatorname{(given} v(t)) \frac{1}{b-a} \int_{a}^{b} v(t) d t$ Average Acceleration: (given $v(t)) \frac{v(b)-v(a)}{b-a}$ $\text { (given } a(t)) \frac{1}{b-a} \int_{a}^{b} a(t) d t$ Displacement: $\quad \int_{a}^{b} v(t) d t$ Total Distance: $\quad \int_{a}^{b}\|v(t)\| d t$ Position at b: $\quad s(b)=s(a)+\int_{a}^{b} v(t) d t$
43	Areas in a Plane: Perpendicular to x-axis: $\int_{a}^{b}[f(x)-g(x)] d x$ $f(x)$ is top curve, $g(x)$ is bottom curve, a and b are x -coordinates of point of intersection Perpendicular to y-axis: $\int_{a}^{b}[f(y)-g(y)] d y$ $f(y)$ is right curve, $g(y)$ is left curve, a and b are y-coordinates of point of intersection
44	Steps to Finding Volume: $\text { Volume }=\int \text { Area }$ 1. decide on whether it's $a d x$ or $d y$ 2. find a formula for the area in terms of x or y 3. find the limits (making sure they match x or y) 4. integrate and evaluate

45	Volumes Around a Horizontal Axis of Rotation or Perpendicular to x-axis: Disc: $\quad V=\int_{a}^{b} \pi r^{2} d x$ Washer: $\quad V=\int_{a}^{b}\left[\pi R^{2}-\pi r^{2}\right] d x$ Slab (Cross Section): $\quad V=\int_{a}^{b} A(x) d x$ a and b are x-coordinates a and b are x-coordinates $A(x)$ is the area formula for the cross section
46	Volumes Around a Vertical Axis of Rotation or Perpendicular to y-axis: Disc: Washer: $\quad V=\int_{a}^{b}\left[\pi R^{2}-\pi r^{2}\right] d y$ Slab (Cross Section): $\quad V=\int_{a}^{b} A(y) d y$ a and b are y-coordinates a and b are y-coordinates $A(y)$ is the area formula for the cross section

