\qquad

1. Find the extrema of $f(x)=4 x^{3}-6 x^{2}-144 x-1$ on the closed interval $[-3,6]$.
2. Find the relative extrema of $f(x)=-3 x^{5}+5 x^{3}$ using the second derivative test. Tell the intervals on which the function is increasing or decreasing.
3. Discuss the concavity of $f(x)=\frac{2}{1-x}$.
4. Find any points of inflection for $f(x)=x^{4}-4 x^{3}$.
5. Determine whether Rolle's Theorem can be applied to $f(x)$ on the indicated interval. If Rolle's Theorem can be applied find all values of c in the interval such that $f^{\prime}(x)=$ 0 .

$$
f(x)=\frac{x}{(x+2)^{2}} \quad \text { on the interval }[-2,0]
$$

6. Find all relative extrema and points of inflection, discuss concavity and increasing and decreasing intervals:

$$
f(x)=\sin x+\cos x \quad 0 \leq x \leq 2 \pi
$$

