$$
y=\sin x \quad y^{\prime}=\cos x
$$

$f(x)=\tan x \quad f^{\prime}(x)=\sec ^{2} x$

$$
y=\sec x \quad \frac{d y}{d x}=\sec x \tan x
$$

$$
f(x)=\cos x \quad f^{\prime}(x)=-\sin x
$$

$$
y=\cot x \quad y^{\prime}=-\csc ^{2} x
$$

$y=\csc x$ $\frac{d y}{d x}=-\csc x \cot x$ $d x$

$$
y=x^{n} \quad y^{\prime}=n x^{n-1}
$$

$$
h^{\prime}(x)=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
$$

$h^{\prime}(x)=$ "first times derivative of second plus second times the derivative of the first"

$$
h^{\prime}(x)=1 D 2+2 D 1
$$

$$
\begin{aligned}
& h(x)=\frac{f(x)}{g(x)} \\
& h(x)=f(g(x))
\end{aligned}
$$

$$
\begin{array}{cc}
f(x)=e^{u} & f^{\prime}(x)=e^{u} \frac{d u}{d x} \\
y=\ln u & \frac{d y}{d x}=\frac{1}{u} \frac{d u}{d x} \\
\begin{array}{c}
\text { Different } \\
\text { notations for } \\
\text { derivative }
\end{array} & \frac{f^{\prime}(x)}{d x} \\
y^{\prime}
\end{array}
$$

Different names

 for the derivativeInstantaneous Rate of Change
Slope of the tangent line Slope of the curve

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

