Example A4: The function f is defined and differentiable on the interval $[-6,8]$ and satisfies $f(0)=-3$. The graph of $y=f^{\prime}(x)$, the derivative of f, consists of a semicircle and six line segments as shown in the figure below.
a) Find $f(6)$ and $f(-6)$. (2)
b) Find the x coordinate of each point of inflection of the graph of $y=f(x)$ on
 $-6<x<8$. Explain your reasoning. (1)
c) Find the equation of the tangent line to f at $x=-6$. Use this line to approximate $f(-5.9)$. Is this value an over-approximation or under-approximation? Explain. (2)
d) Find the absolute maximum value of $f(x)$ on $-6 \leq x \leq 8$. Justify your answer. (2)
e) The function g is defined as $g(x)=\frac{x^{2}}{2}-f(x)$. Find the values of x for each critical point of g on $-6<x<8$. Explain your reasoning. (2)

