

Implicit Differentiation Practice Questions

by Christopher Thomas

To review these concepts, go to Implicit Differentiation Study Guide.

Implicit Differentiation Practice Questions

Find $\frac{dy}{dx}$ in the following equations. 1. $(y+1)^3 = x^4 - 8x$ 2. $y^3 + y = \sin(x)$ 3. $\sin(y) = 4x + 7$ 4. $y - \sqrt{y} = \ln(x)$ 5. $y^2 + x = 3x^4 + 8y$ 6. $e^{x} + e^{y} = x^{3}$ 7. tan(y) = cos(x)8. $y = \sqrt{x + y}$ 9. $\sin(x) - \sin(y) = x$ 10. $y - \ln(y) = 10x^3 - 6x^2 + 4$ 11. $(y + x^2)^4 = 10x$ 12. $x^2 y = y^4 x^4$ 13. $\frac{x}{y} + xy = x + y$ 14. $\sec(v) + 9v = x^3 \cos(v)$ 15. Find the tangent line slope of $y^3 + x^2 = y^2 - 5y + 14$ at (-3, 1). 16. Find the tangent line slope of $x^3 + y^3 = 3y - x$ at (1, -2). 17. Find the slope of the tangent line to $\ln(3y-5) + x = y^2$ at (4,2). 18. Find the slope of the tangent line at (2,3) on the graph of $x^2y + y^2x = 30$. 19. Find the equation of the tangent line to $\sin(y) = x$ at the point $\left(\frac{1}{2}\frac{\pi}{6}\right)$. 20. Find the equation of the tangent line to $x^2 + 6y = xy + 3$ at (3, -2).

Solutions

1. $3(y+1)^2 \cdot \frac{dy}{dx} = 4x^3 - 8$, so $\frac{dy}{dx} = \frac{4x^3 - 8}{3(y+1)^2}$

2.
$$3y^2 \cdot \frac{dy}{dx} + \frac{dy}{dx} = \cos(x), \text{ so } \frac{dy}{dx} = \frac{\cos(x)}{3y^2 + 1}$$

3. $\frac{dy}{dx} = \frac{4}{\cos(y)} = 4\sec(y)$
4. $\frac{dy}{dx} = \frac{1}{x} = \frac{2\sqrt{y}}{2x\sqrt{y - x}}$
5. $\frac{dy}{dx} = \frac{12x^3 - 1}{2y - 8}$
6. $\frac{dy}{dx} = \frac{3x^2 - e^x}{e^x}$
7. $\frac{dy}{dx} = \frac{-\sin(x)}{e^{-2}(y)} = -\sin(x)\cos^2(y)$
8. $\frac{dy}{dx} = \frac{1 - \cos(x)}{-\cos(y)}$
10. $\frac{dy}{dx} = \frac{1 - \cos(x)}{1 - \frac{1}{y}} = \frac{30x^2y - 12xy}{y - 1}$
11. $\frac{dy}{dx} = \frac{52(y + x^2)^3}{x^2 - 4y^2} - 2x$
12. $\frac{dy}{dx} = \frac{4x^2 - 2xy}{x^2 - 4y^2}$
13. $\frac{y - x \cdot \frac{dy}{dx} + y + \frac{dy}{dx} \cdot x = 1 + \frac{dy}{dx}, \text{ so } \frac{dy}{dx} = \frac{1 - y - \frac{1}{y}}{-\frac{x}{y^2} + x - 1} = \frac{y^2 - y^3 - y}{-x + xy^2 - y^2}$
14. $\frac{dy}{dx} = \frac{3x^2\cos(y)}{4x + 2x = 2y \cdot \frac{dy}{dx} - 5 \cdot \frac{dy}{dx}, \text{ so at (-3,1), the tangent slope is } \frac{dy}{dx} = 1.$
16. $\frac{dy}{dx} = -\frac{21}{16}$ at (2,3)
19. $\frac{dy}{dx} = \frac{2\sqrt{3}}{3}$ at $(\frac{1}{2}, \frac{\pi}{6})$, so the tangent equation is $y = \frac{2\sqrt{3}}{3}(x - \frac{1}{2}) + \frac{\pi}{6}$.

Related Books

<u>Calculus Success in 20 Minutes A Day</u> Buy this book »

amazon.com

© Copyright 2006-2012 Education.com All Rights Reserved.

http://www.education.com/study-help/article/implicit-differentiation_answer/