Implicit Differentiation Practice Questions

by Christopher Thomas
To review these concepts, go to Implicit Differentiation Study Guide.

Implicit Differentiation Practice Questions

Find $\frac{d y}{d x}$ in the following equations.

1. $(y+1)^{3}=x^{4}-8 x$
2. $y^{3}+y=\sin (x)$
3. $\sin (y)=4 x+7$
4. $y-\sqrt{y}=\ln (x)$
5. $y^{2}+x=3 x^{4}+8 y$
6. $e^{x}+e^{y}=x^{3}$
7. $\tan (y)=\cos (x)$
8. $y=\sqrt{x+y}$
9. $\sin (x)-\sin (y)=x$
10. $y-\ln (y)=10 x^{3}-6 x^{2}+4$
11. $\left(y+x^{2}\right)^{4}=10 x$
12. $x^{2} y=y^{4} x^{4}$
13. $\frac{x}{y}+x y=x+y$
14. $\sec (y)+9 y=x^{3} \cos (y)$
15. Find the tangent line slope of $y^{3}+x^{2}=y^{2}-5 y+14$ at $(-3,1)$.
16. Find the tangent line slope of $x^{3}+y^{3}=3 y-x$ at $(1,-2)$.
17. Find the slope of the tangent line to $\ln (3 y-5)+x=y^{2}$ at $(4,2)$.
18. Find the slope of the tangent line at $(2,3)$ on the graph of $x^{2} y+y^{2} x=30$.
19. Find the equation of the tangent line to $\sin (y)=x$ at the point $\left(\frac{1}{2} \frac{\pi}{6}\right)$.
20. Find the equation of the tangent line to $x^{2}+6 y=x y+3$ at $(3,-2)$.

Solutions

1. $3(y+1)^{2} \cdot \frac{d y}{d x}=4 x^{3}-8$, so $\frac{d y}{d x}=\frac{4 x^{3}-8}{3(y+1)^{2}}$
2. $3 y^{2} \cdot \frac{d y}{d x}+\frac{d y}{d x}=\cos (x)$, so $\frac{d y}{d x}=\frac{\cos (x)}{3 y^{2}+1}$
3. $\frac{d y}{d x}=\frac{4}{\cos (y)}=4 \sec (y)$
4. $\frac{d y}{d x}=\frac{\frac{1}{x}}{1-\frac{1}{2 \sqrt{y}}}=\frac{2 \sqrt{y}}{2 x \sqrt{y}-x}$
5. $\frac{d y}{d x}=\frac{12 x^{3}-1}{2 y-8}$
6. $\frac{d y}{d x}=\frac{3 x^{2}-e^{x}}{e^{y}}$
7. $\frac{d y}{d x}=\frac{-\sin (x)}{\sec ^{2}(y)}=-\sin (x) \cos ^{2}(y)$
8. $\frac{d y}{d x}=\frac{1}{2 \sqrt{x+y}}\left(1+\frac{d y}{d x}\right)$, so $\frac{d y}{d x}=\frac{\frac{1}{2 \sqrt{x+y}}}{1-\frac{1}{2 \sqrt{x+y}}}=\frac{1}{2 \sqrt{x+y}-1}$
9. $\frac{d y}{d x}=\frac{1-\cos (x)}{-\cos (y)}$
10. $\frac{d y}{d x}=\frac{30 x^{2}-12 x}{1-\frac{1}{y}}=\frac{30 x^{2} y-12 x y}{y-1}$
11. $\frac{d y}{d x}=\frac{5}{2\left(y+x^{2}\right)^{3}}-2 x$
12. $\frac{d y}{d x}=\frac{4 x^{3}-2 x y}{x^{2}-4 y^{3}}$
13. $\frac{y-x \cdot \frac{d y}{d x}}{y^{2}}+y+\frac{d y}{d x} \cdot x=1+\frac{d y}{d x}$, so $\frac{d y}{d x}=\frac{1-y-\frac{1}{y}}{-\frac{x}{y^{2}}+x-1}=\frac{y^{2}-y^{3}-y}{-x+x y^{2}-y^{2}}$
14. $\frac{d y}{d x}=\frac{3 x^{2} \cos (y)}{\sec (y) \tan (y)+9+x^{3} \sin (y)}$
15. $3 y^{2} \cdot \frac{d y}{d x}+2 x=2 y \cdot \frac{d y}{d x}-5 \cdot \frac{d y}{d x}$, so at $(-3,1)$, the tangent slope is $\frac{d y}{d x}=1$.
16. $\frac{d y}{d x}=-\frac{4}{9}$ at $(1,-2)$
17. $\frac{d y}{d x}=1$ at $(4,2)$
18. $\frac{d y}{d x}=-\frac{21}{16}$ at $(2,3)$
19. $\frac{d y}{d x}=\frac{2 \sqrt{3}}{3}$ at $\left(\frac{1}{2}, \frac{\pi}{6}\right)$, so the tangent equation is $y=\frac{2 \sqrt{3}}{3}\left(x-\frac{1}{2}\right)+\frac{\pi}{6}$.
20. $\frac{d y}{d x}=-\frac{8}{3}$ at $(3,-2)$, so the tangent equation is $y=-\frac{8}{3}(x-3)-2=-\frac{8}{3} x+6$.

Related Books

Calculus Success in 20 Minutes A Day
Buy this book » amazoncont
© Copyright 2006-2012 Education.com All Rights Reserved.
http://www.education.com/study-help/article/implicit-differentiation_answer/

