Implicit Differentiation

For each problem, use implicit differentiation to find $\frac{dy}{dx}$ in terms of x and y.

1)
$$2x^3 = 2y^2 + 5$$

$$2) \ 3x^2 + 3y^2 = 2$$

3)
$$5y^2 = 2x^3 - 5y$$

4)
$$4x^2 = 2y^3 + 4y$$

5)
$$5x^3 = -3xy + 2$$

$$6) \ \ 1 = 3x + 2x^2y^2$$

7)
$$3x^2y^2 = 4x^2 - 4xy$$

8)
$$5x^3 + xy^2 = 5x^3y^3$$

9)
$$2x^3 = (3xy + 1)^2$$

10)
$$x^2 = (4x^2y^3 + 1)^2$$

-1-

11)
$$\sin 2x^2y^3 = 3x^3 + 1$$

12)
$$3x^2 + 3 = \ln 5xy^2$$

For each problem, use implicit differentiation to find $\frac{d^2y}{dx^2}$ in terms of x and y.

13)
$$4y^2 + 2 = 3x^2$$

14)
$$5 = 4x^2 + 5y^2$$

Critical thinking question:

15) Use three strategies to find $\frac{dy}{dx}$ in terms of x and y, where $\frac{3x^2}{4y} = x$. Strategy 1: Use implicit differentiation directly on the given equation. Strategy 2: Multiply both sides of the given equation by the denominator of the left side, then use implicit differentiation. Strategy 3: Solve for y, then differentiate. Do your three answers look the same? If not, how can you show that they are all correct answers?