AP CALCULUS

IMPLICIT DIFFERENTIATION

Find dy/dx. Find the slope at the given point if a point is given.

1.
$$x^2y + xy^2 = 6$$

2.
$$y = x^{-\frac{3}{5}}$$

3.
$$x + \sin y = xy$$

4.
$$x^2 + 4xy + 4y^2 - 3x$$

5.
$$x = \cos y$$

6.
$$x^2 + y^2 = 13$$
 (-2, 3)

7.
$$(x-1)^2 + (y-1)^2 = 13$$

Use Implicit Differentiation to find dy/dx and then find d^2y/d^2x .

8.
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$$

9.
$$y^2 + 2y = 2x + 1$$

Find the equations of the lines that are tangent and normal (perpendicular) to the curve at the given point.

9.
$$x^2y^2 = 9$$

10.
$$x^2 - \sqrt{3}xy + 2y^2 = 5x$$
 $(\sqrt{3},2)$

11.
$$2xy + \pi \sin y = 2\pi$$
 (1, $\pi/2$)

$$(1, \pi/2)$$

12.
$$y = 2 \sin(\pi x - y)$$

RIDDLE

AP CALCULUS

IMPLICIT DIFFERENTIATION

Find dy/dx. Find the slope at the given point if a point is given.

1.
$$x^2y + xy^2 = 6$$

2.
$$y = x^{-\frac{3}{5}}$$

3.
$$x + \sin y = xy$$

4.
$$x^2 + 4xy + 4y^2 - 3x$$

5.
$$x = \cos y$$

6.
$$x^2 + y^2 = 13$$
 (-2, 3)

7.
$$(x-1)^2 + (y-1)^2 = 13$$

Use Implicit Differentiation to find dy/dx and then find d^2y/d^2x .

8.
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$$

9.
$$y^2 + 2y = 2x + 1$$

Find the equations of the lines that are tangent and normal (perpendicular) to the curve at the given point.

9.
$$x^2y^2 = 9$$

10.
$$x^2 - \sqrt{3}xy + 2y^2 = 5x$$
 $(\sqrt{3},2)$

11.
$$2xy + \pi \sin y = 2\pi$$
 (1, $\pi/2$)

$$(1, \pi/2)$$

12.
$$y = 2 \sin(\pi x - y)$$