

Integration Practice Problems for AP Calculus

by William Ma

Review the following concepts if needed:

- Evaluating Basic Integrals for AP Calculus
- Integration by U-Substitution for AP Calculus
- Techniques of Integration for AP Calculus

Evaluate the following integrals in problems 1 to 20. No calculators are allowed. (However, you may use calculators to check your results.)

1.
$$\int (x^5 + 3x^2 - x + 1)dx$$

2.
$$\int \left(\sqrt{x} - \frac{1}{x^2}\right)dx$$

3.
$$\int x^3 (x^4 - 10)^5 dx$$

4.
$$\int x^3 \sqrt{x^2 + 1} dx$$

5.
$$\int \frac{x^2 + 5}{\sqrt{x - 1}} dx$$

6.
$$\int \tan\left(\frac{x}{2}\right) dx$$

7.
$$\int x \csc^2(x^2) dx$$

8.
$$\int \frac{\sin x}{\cos^3 x} dx$$

9.
$$\int \frac{1}{x^2 + 2x + 10} dx$$

10.
$$\int \frac{1}{x^2} \sec^2\left(\frac{1}{x}\right) dx$$

11.
$$\int (e^{2x})(e^{4x}) dx$$

12.
$$\int \frac{1}{x \ln x} dx$$

13.
$$\int \ln(e^{5x + 1}) dx$$

14.
$$\int \frac{e^{4x} - 1}{e^x} dx$$

15.
$$\int (9 - x^2) \sqrt{x} dx$$

16.
$$\int \sqrt{x} (1 + x^{3/2})^4 dx$$

17. If $\frac{dy}{dx} = e^x + 2$ and the point (0, 6) is on the graph of y, find y.
18.
$$\int -3e^x \sin(e^x) dx$$

19.
$$\int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx$$

20. If $f(x)$ is the antiderivative $\frac{1}{x}$ of and $f(1) = 5$, find $f(e)$.
21.
$$\int x^2 \sqrt{1 - x} dx$$

22.
$$\int 3x^2 \sin x dx$$

23.
$$\int \frac{x dx}{x^2 - 3x - 4}$$

24.
$$\int \frac{dx}{x^2 + x}$$

25.
$$\int \frac{\ln x}{(x + 5)^2} dx$$

(Calculator) indicates that calculators are permitted.

26. The graph of the velocity function of a moving particle for $0 \le t \le 10$ is shown in Figure 10.6-1.

- a. At what value of t is the speed of the particle the greatest?
- b. At what time is the particle moving to the right?
- 27. Air is pumped into a spherical balloon, whose maximum radius is 10 meters. For what value of *r* is the rate of increase of the volume a hundred times that of the radius?
- 28. Evaluate $\int \frac{\ln^3(x)}{x} dx$.
- 29. (Calculator) The function *f* is continuous and differentiable on (0, 2) with f''(x) > 0 for all *x* in the interval (0, 2). Some of the points on the graph are shown below.

x	0	0.5	1	1.5	2
f(x)	1	1.25	2	3.25	5

Which of the following is the best approximation for f'(1)?

- a. *f* ′(1) < 2
- b. 0.5 < f'(1) < 1
- c. 1.5 < f'(1) < 2.5
- d. 2.5 < f'(1) < 3.5
- e. f'(1) > 2
- 30. The graph of the function *f* " on the interval [1, 8] is shown in Figure 10.6-2. At what value(s) of *t* on the open interval (1, 8), if any, does the graph of the function *f* ':

Figure 10.6-2

- a. have a point of inflection?
- b. have a relative maximum or minimum?
- c. concave upward?
- 31. Evaluate $\lim_{x \to -2} \frac{x^2 x 6}{x^2 4}$.
- 32. If the position of an object is given by $x = 4 \sin(\pi t)$, $y = t^2 3t + 1$, find the position of the object at t = 2.
- 33. Find the slope of the tangent line to the curve $r = 3 \cos \theta$ when $\theta = \frac{\pi}{4}$.

Solutions for these practice problems can be found at: <u>Solutions to Integration Practice Problems for</u> <u>AP Calculus</u>

Related Books

5 Steps to a 5 AP Calculus AB and BC Buy this book » amazon.com

© Copyright 2006-2012 Education.com All Rights Reserved.

http://www.education.com/study-help/article/practice-problems4/