Integration Practice Problems for AP Calculus

by William Ma
Review the following concepts if needed:

- Evaluating Basic Integrals for AP Calculus
- Integration by U-Substitution for AP Calculus
- Techniques of Integration for AP Calculus

Evaluate the following integrals in problems 1 to 20. No calculators are allowed. (However, you may use calculators to check your results.)

1. $\int\left(x^{5}+3 x^{2}-x+1\right) d x$
2. $\int\left(\sqrt{x}-\frac{1}{x^{2}}\right) d x$
3. $\int x^{3}\left(x^{4}-10\right)^{5} d x$
4. $\int x^{3} \sqrt{x^{2}+1} d x$
5. $\int \frac{x^{2}+5}{\sqrt{x-1}} d x$
6. $\int \tan \left(\frac{x}{2}\right) d x$
7. $\int x \csc ^{2}\left(x^{2}\right) d x$
8. $\int \frac{\sin x}{\cos ^{3} x} d x$
9. $\int \frac{1}{x^{2}+2 x+10} d x$
10. $\int \frac{1}{x^{2}} \sec ^{2}\left(\frac{1}{x}\right) d x$
11. $\int\left(e^{2 x}\right)\left(e^{4 x}\right) d x$
12. $\int \frac{1}{x \ln x} d x$
13. $\int \ln \left(e^{5 x+1}\right) d x$
14. $\int \frac{e^{4 x}-1}{e^{x}} d x$
15. $\int\left(9-x^{2}\right) \sqrt{x} d x$
16. $\int \sqrt{x}\left(1+x^{3 / 2}\right)^{4} d x$
17. If $\frac{d y}{d x}=e^{x}+2$ and the point $(0,6)$ is on the graph of y, find y.
18. $\int-3 e^{x} \sin \left(e^{x}\right) d x$
19. $\int \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x$
20. If $f(x)$ is the antiderivative $\frac{1}{x}$ of and $f(1)=5$, find $f(e)$.
21. $\int x^{2} \sqrt{1-x} d x$
22. $\int 3 x^{2} \sin x d x$
23. $\int \frac{x d x}{x^{2}-3 x-4}$
24. $\int \frac{d x}{x^{2}+x}$
25. $\int \frac{\ln x}{(x+5)^{2}} d x$
(Calculator) indicates that calculators are permitted.
26. The graph of the velocity function of a moving particle for $0 \leq t \leq 10$ is shown in Figure 10.6-1.

Figure 10.6-1
a. At what value of t is the speed of the particle the greatest?
b. At what time is the particle moving to the right?
27. Air is pumped into a spherical balloon, whose maximum radius is 10 meters. For what value of r is the rate of increase of the volume a hundred times that of the radius?
28. Evaluate $\int \frac{\ln ^{3}(x)}{x} d x$.
29. (Calculator) The function f is continuous and differentiable on $(0,2)$ with $f^{\prime \prime}(x)>0$ for all x in the interval $(0,2)$. Some of the points on the graph are shown below.

x	0	0.5	1	1.5	2
$f(x)$	1	1.25	2	3.25	5

Which of the following is the best approximation for $f^{\prime}(1)$?
a. $f^{\prime}(1)<2$
b. $0.5<f^{\prime}(1)<1$
c. $1.5<f^{\prime}(1)<2.5$
d. $2.5<f^{\prime}(1)<3.5$
e. $f^{\prime}(1)>2$
30. The graph of the function f " on the interval [1,8] is shown in Figure 10.6-2. At what value(s) of t on the open interval $(1,8)$, if any, does the graph of the function f^{\prime} :

Figure 10.6-2
a. have a point of inflection?
b. have a relative maximum or minimum?
c. concave upward?
31. Evaluate $\lim _{x \rightarrow-2} \frac{x^{2}-x-6}{x^{2}-4}$.
32. If the position of an object is given by $x=4 \sin (\pi t), y=t^{2}-3 t+1$, find the position of the object at $t=2$.
33. Find the slope of the tangent line to the curve $r=3 \cos \theta$ when $\theta=\frac{\pi}{4}$.

Solutions for these practice problems can be found at: Solutions to Integration Practice Problems for AP Calculus

Related Books

5 Steps to a 5 AP Calculus AB and BC
Buy this book"
amazoncom
© Copyright 2006-2012 Education.com All Rights Reserved.
http://www.education.com/study-help/article/practice-problems4/

