\qquad

CALCULUS: LIMITS, CONTINUITY \& DIFFERENTIABILITY PACKET

1. Explain in your own words what is meant by the equation

$$
\lim _{x \rightarrow 2} f(x)=5 .
$$

Is it possible for this statement to be true and yet $f(2)=3$? Explain.
2. Explain what it means to say that

$$
\lim _{x \rightarrow 1^{-}} f(x)=3 \text { and } \lim _{x \rightarrow 1^{+}} f(x)=7
$$

In this situation, it is possible that $\lim _{x \rightarrow 1} f(x)$ exists?
3. Explain the meaning of each of the following.
(a) $\lim _{x \rightarrow-3} f(x)=\infty$
(b) $\lim _{x \rightarrow 4^{+}} f(x)=-\infty$
4. For the function f whose graph is given, state the value of the given quantity, if it exists. If it does not exist, explain why.
(a) $\lim _{x \rightarrow 1} f(x)=$
(b) $\lim _{x \rightarrow 3^{-}} f(x)=$
(c) $\lim _{x \rightarrow 3^{+}} f(x)=$
(d) $\lim _{x \rightarrow 3} f(x)=$
(e) $f(3)=$
(f) $\lim _{x \rightarrow-2^{-}} f(x)=$
(g) $\lim _{x \rightarrow-2^{+}} f(x)=$
(h) $\lim _{x \rightarrow-2} f(x)=$
(i) $f(-2)=$

5. For the function f whose graph is shown, state the following.
(a) $\lim _{x \rightarrow 3} f(x)=$
(b) $\lim _{x \rightarrow 7} f(x)=$
(c) $\lim _{x \rightarrow-4} f(x)=$
(d) $\lim _{x \rightarrow-9^{-}} f(x)=$
(e) $\lim _{x \rightarrow-9^{+}} f(x)=$
(f) The equations of the vertical asymptotes

6. A patient receives a $150-\mathrm{mg}$ injection of a drug every four hours. The graph shows the amount $f(t)$ of the drug in the bloodstream after t hours. Find $\lim _{t \rightarrow 12^{-}} f(t)$ and $\lim _{x \rightarrow 12^{+}} f(t)$
and explain the significance of these one-sided limits.

7. Sketch the graph of the function $f(x)=\frac{1}{\left(1+2^{1 / x}\right)}$ and state the value of each limit, if it exists. If it does not exist, explain why.
(a) $\lim _{x \rightarrow 0^{-}} f(x)=$
(b) $\lim _{x \rightarrow 0^{+}} f(x)=$
(c) $\lim _{x \rightarrow 0} f(x)=$
8. Sketch the graph of the following function and use it to determine the values of a for which $\lim _{x \rightarrow a} f(x)$ exists.

$$
f(x)= \begin{cases}2-x, & x<-1 \\ x, & -1 \leq x<1 \\ (x-1)^{2}, & x \geq 1\end{cases}
$$

Fill in the table for the following functions to find the given limit.
9. $f(x)=\frac{\sin (3 x)}{x}$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(x)$							

$$
\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x}=
$$

10. $g(x)=\frac{1-\cos x}{x^{2}}$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$g(x)$							

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=
$$

11. Given that $\lim _{x \rightarrow a} f(x)=-3, \lim _{x \rightarrow a} g(x)=0, \lim _{x \rightarrow a} h(x)=8$, find the limits that exist. If the limit does not exist, explain why.
(a) $\lim _{x \rightarrow a}[f(x)+h(x)]=$
(b) $\lim _{x \rightarrow a}[f(x)]^{2}=$
(c) $\lim _{x \rightarrow a} \sqrt[3]{h(x)}=$
(d) $\lim _{x \rightarrow a} \frac{1}{f(x)}=$
(e) $\lim _{x \rightarrow a} \frac{f(x)}{h(x)}=$
(f) $\lim _{x \rightarrow a} \frac{g(x)}{f(x)}=$
(g) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=$
(h) $\lim _{x \rightarrow a} \frac{2 f(x)}{h(x)-f(x)}=$
12. The graphs of f and g are given. Use them to evaluate each limit, if it exists. If the limit does not exist, explain why.

(a) $\lim _{x \rightarrow 2}[f(x)+g(x)]=$
(b) $\lim _{x \rightarrow 1}[f(x)+g(x)]=$
(c) $\lim _{x \rightarrow 0}[f(x) g(x)]=$
(d) $\lim _{x \rightarrow-1} \frac{f(x)}{g(x)}=$
(e) $\lim _{x \rightarrow 2} x^{3} f(x)=$
(f) $\lim _{x \rightarrow 1} \sqrt{3+f(x)}=$

Find the limit. Draw a sketch for each problem. Do not use your calculator.
13. $\lim _{x \rightarrow 1^{+}} \frac{1}{x-1}=$
14. $\lim _{x \rightarrow 1} \frac{1}{x-1}=$
15. $\lim _{x \rightarrow-3} \frac{1}{(x+3)^{2}}=$
16. $\lim _{x \rightarrow 5^{-}} \frac{1}{5-x}=$
17. $\lim _{x \rightarrow 5^{-}} \frac{1}{(5-x)^{2}}=$
18. $\lim _{x \rightarrow 2} \frac{-1}{(x-2)^{2}}=$
19. $\lim _{x \rightarrow 3} \frac{|x-3|}{x-3}=$
20. $\lim _{x \rightarrow 2}[x+1]=$
21. $\lim _{x \rightarrow 2^{+}} \frac{x^{3}|x-2|}{x-2}=$
22. $\lim _{x \rightarrow 4^{-}} \frac{x^{3}[x-4]}{x-4}=$
23. $\lim _{x \rightarrow 3^{+}}\left(x-3-\frac{1}{x-3}\right)=$
24. $\lim _{x \rightarrow \frac{\pi}{}^{+}} \tan x=$
25. $\lim _{x \rightarrow-\frac{\pi^{+}}{2}} \sec x=$
26. $\lim _{x \rightarrow \pi^{-}} \csc x=$
27. $\lim _{x \rightarrow 0^{-}} \cot x=$
28. $f(x)=\left\{\begin{array}{l}x^{2}-1 \text { if } x<2 \\ 3 x-2 \text { if } x>2\end{array}\right.$
a) $\lim _{x \rightarrow 2^{-}} f(x)=$
b) $\lim _{x \rightarrow 2^{+}} f(x)=$
c) $\lim _{x \rightarrow 2} f(x)=$
29. $g(x)=\left\{\begin{array}{l}x-3 \text { if } x \neq 1 \\ 4 \text { if } x=1\end{array} \quad \lim _{x \rightarrow 1} g(x)=\right.$ 30. $h(x)=\left\{\begin{array}{l}x+3 \text { if } x<1 \\ 3 x^{2}+1 \text { if } x>1\end{array} \quad \lim _{x \rightarrow 1} h(x)=\right.$
31. Determine if the following statements regarding the function $y=f(x)$ are true or false.
a. $\lim _{x \rightarrow-1^{+}} f(x)=1$
b. $\lim _{x \rightarrow 0^{-}} f(x)=0$
c. $\lim _{x \rightarrow 0^{-}} f(x)=1$
d. $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)$
e. $\lim _{x \rightarrow 0} f(x)$ exists
f. $\lim _{x \rightarrow 0} f(x)=0$
g. $\lim _{x \rightarrow 0} f(x)=1$
h. $\lim _{x \rightarrow 1} f(x)=1$
i. $\lim _{x \rightarrow 1} f(x)=0$
j. $\lim _{x \rightarrow 2} f(x)=$

On problems 32-37 (Use your graphing calculator on problems 36 and 37):
(a) find $\lim _{x \rightarrow \infty} f(x)$
(b) find $\lim _{x \rightarrow-\infty} f(x)$
(c) identify all horizontal asymptotes.
32. $f(x)=\frac{3 x^{3}-x+1}{x+3}$
33. $f(x)=\frac{4 x^{2}-3 x+5}{2 x^{3}+x-1}$
34. $f(x)=\frac{3 x+1}{x-4}$
35. $f(x)=\frac{3 x+1}{|x|+2}$
36. $f(x)=\frac{\sin 3 x}{x}$
37. $f(x)=\cos \left(\frac{1}{x}\right)$

On problems 38-41 (Use your calculator on problems 37-39):
(a) find the vertical asymptotes of $f(x)$
(b) describe the behavior of $f(x)$ to the left and right of each vertical asymptote.
38. $f(x)=\frac{1}{x^{2}-4}$
39. $f(x)=\frac{x^{2}+5 x+6}{x^{2}-4}$
40. $f(x)=\frac{x^{2}-2 x}{x+1}$
41. $f(x)=\sec x$
42. Given $f(x)=\frac{2-5|x|}{3 x+4}$, find the following. Show all work!
(a) $\lim _{x \rightarrow \infty} f(x)$
(c) Name the horizontal asymptotes of f.
(b) $\lim _{x \rightarrow-\infty} f(x)$
(d) Name the vertical asymptotes of f.

On problems 43 and 44:
(a) Find the values of x, if any, for which the function is discontinuous.
(b) Identify each discontinuity as point, jump, or asymptotic.
(c) Identify each discontinuity as removable or nonremovable.
43. $f(x)=\frac{x^{2}-9}{x-3}$
44. $g(x)=\frac{x-1}{x^{2}-x-2}$

For problems 45-47, graph the function. Determine if the function is continuous at the specified value of x. Justify (making sure to show all three steps of the definition).
45. $g(x)=\left\{\begin{array}{ll}x+5 & x \neq 0 \\ 4 & x=0\end{array} \quad\right.$ 4t $x=0 \quad h(x)=\left\{\begin{array}{ll}-x^{2}+8 & x<2 \\ \frac{1}{2} x+3 & x \geq 2\end{array}\right.$ at $x=2$
47. $f(x)= \begin{cases}\frac{x^{2}-1}{x-1} & x \neq 1 \\ x & x=1\end{cases}$
48. $f(x)=\left\{\begin{array}{cc}\frac{x^{2}+3 x-10}{x-2} & x \neq 2 \\ ? & x=2\end{array}\right.$ Define $f(2)$ in a way that intends $f(x)$ to be continuous.
49. Find k so that f will be continuous at $x=3$, given $f(x)=\left\{\begin{array}{l}k x^{2}, x \leq 2 \\ 2 x+k, x>2\end{array}\right.$.
50. Determine if $f(x)$ is continuous at $x=0$ and $x=1$. Justify. $f(x)= \begin{cases}x+1, & x<0 \\ e^{x}, & 0 \leq x \leq 1 \\ 2-x, & x>1\end{cases}$
51. Find a value of constant k that will make the function continuous. $f(x)= \begin{cases}k x^{2}, & x \leq 2 \\ 2 x+k, & x>2\end{cases}$
52. Find a value of constant k and m that will make the function continuous.

$$
f(x)= \begin{cases}x^{2}+5, & x>2 \\ m(x+1)+k, & -1<x \leq 2 \\ 2 x^{3}+x+7, & x \leq-1\end{cases}
$$

53. Find a value of constant k that will make the function continuous. $f(x)= \begin{cases}\frac{\sin 3 x}{x}, & x \neq 0 \\ k, & x=0\end{cases}$
54. Find a value of constant c and d that will make the function continuous.

$$
m(x)= \begin{cases}-\sqrt{4-(x+3)^{2}}, & x \leq-1 \\ c x+d, & -1<x<3 \\ \sqrt{x-3}+4, & x \geq 3\end{cases}
$$

55. Show whether the Intermediate Value Theorem holds. If the theorem holds, find the value of c which the theorem guarantees; if the theorem does not hold give the reason. Also sketch the graph of f.

$$
f(x)=(x-3)^{2}+2,[a, b]=[1,4], k=5
$$

56. (Calculator allowed.) The population y, of bacteria Makeyoucoughus hurtyourthruatus is modeled by the equation $y=50 e^{.1013663 t}$, where t is days and y is the number of colonies of bacteria. Use the Intermediate Value Theorem to verify that the bacteria will reach a population of 100 colonies on the time interval $[4,7]$. Then determine when the population will reach 100 colonies.
57. Just for fun....

James' Diabolical Challenge Problem:
Given $j(x)=\left\{\begin{array}{ll}\frac{x^{2}-(4+A) x+4 A}{x-4}, & x \neq 4 \\ B, & x=4\end{array}\right.$ and $j(2)=1$ and $j(x)$ is everywhere continuous, find A and B.

