$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

Line contains an infinite number of points. and continue in two directions infinitely.
$y=m x+b$ slope-intercept form (point where line crosses y-axis)

Lines can intersect.

one point
 same slope
never intersect parallel intersections
\rightarrow perpendicular
lines

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

opposite reciprocal slope
point-slope form of a line

$$
A x+B y=C \quad \text { standard } \begin{gathered}
\text { form }
\end{gathered}
$$

- A must be \oplus
- no fractions

$$
m=-\frac{A}{B}
$$

Coordinate Grid Paper

Thousands of Free Worksheets at Math-Drills.Com

Write the equation of a line.

- passes through $\binom{x_{1}, y_{1}}{2,-5}$ and has a slope of 3 .

$$
\begin{array}{c|c}
\text { slope of } 3 . & y-y_{1}=m\left(x-x_{1}\right) \\
y=m x+b & y--5=3(x-2) \\
\hline-5=3(2)+b & y+5=3 x-6 \\
-5=6+b & \frac{y}{-6}=-6 \\
\hline-11=b & \frac{-5}{-5} \\
\underbrace{}_{=2} & y=3 x-11
\end{array}
$$

$$
m=0
$$

- passing through $\left(\begin{array}{c}x_{1}, y_{1} \\ -1,3)\end{array}\right.$ and $(4,3)$

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=0(x+1) \\
y-3=0 \\
y=3
\end{gathered}
$$

passes through $\binom{x, y}{2,4}$ parallel to

$$
\begin{gathered}
y=\left[\frac{1}{1} x-5\right. \text { same slope } \\
y=m x+b \\
4=1(2)+b \\
4=2+b \\
2=b \\
y=1 x+2
\end{gathered}
$$

Passing through $(3,-4)$
perpendiculars
to $2 x-3 y=5$

$$
\begin{aligned}
& m=\frac{-2}{-3}=\frac{2}{3} \\
& 1 m=-\frac{3}{2} \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+4=\frac{-3}{2}(x-3) \\
& \text { - } 2 y+8=-3 x+9 \\
& 2 y=-3 x+1 \\
& \text { 2. } y+4=\frac{2}{2}+\frac{3 x}{2} \\
& y=\frac{-3}{2} x+\frac{1}{2}
\end{aligned}
$$

