Name _____

AB Memory Quiz 2

Complete the statement on the left with a statement from the right.

- —1. Limit Definition of the Derivative
- 2. Power Rule
- $---- 3. \quad \frac{d}{dx} \left[\frac{1}{x} \right]$
 - _____4. Particle is moving left/down because
 - ____5. Particle is speeding up (|velocity| is getting bigger) because
- $----- 6. \quad \frac{d}{dx} [\tan x]$
 - $----7. \quad \frac{d}{dx} [\sec x]$
 - **—— 8**. $\frac{d}{dx}$ [arcsin]
 - $-----9. \quad \frac{d}{dx}[\ln x]$
 - _____10. Using 2nd derivative: f has a relative max b/c
 - 11. Using 2nd derivative: f has a relative min b/c
 - _____12. f(x) is concave up b/c
 - **13.** f(x) is concave down b/c
 - $----- 14. \quad \int \frac{1}{x} dx$
 - $\underline{\qquad} 15. \int_{a}^{b} f'(x) dx$

- **A**. f(b) f(a)**B.** $\sec^2 x$ **C.** $\frac{d}{dx} [x^n] = nx^{n-1}$ **D**. sec $x \tan x$ **E**. v(t) < 0 (negative) **F.** f'(c) = 0 (or und) and f''(x) < 0**G**. $\frac{1}{\sqrt{1-x^2}}$ **H**. $-\frac{1}{r^2}$ **I**. $\ln x + C$ **J**. $\frac{1}{r}$ **K**. v(t) and a(t) have same signs. **L**. f''(x) > 0. **M.** $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
 - **N.** f''(x) < 0
 - **O**. f'(c) = 0 (or und) and f''(x) > 0