Notes about sketching with the derivative 1. If the first derivative is positive, then the original function is
2. If the first derivative is negative, then the original function is
3. If the first derivative is zero, then there is either a,
on the original function.
4. If the second derivative is positive, then the original function is
5. If the second derivative is negative, then the original function is
6. If the second derivative is zero, then there is an
on the original function. To determine if this point is an
you must check to see if the second derivative changes signs around the point.
If the concavity changes around the point, then it is an
7. If the slopes of the first derivative are positive then the
is positive. As stated above if the second derivative is positive, then the original is
Therefore, if the slopes of the first derivative are positive then the original is
8. If the slopes of the first derivative are negative then the
As stated above if the second derivative is negative, then the original is
Therefore, if the slopes of the first derivative are negative then the original is

10. If the slopes of the first derivative are zero, then the
is zero. If the second derivative is zero then the original has a
If the point in question is a relative maximum or a relative minimum on the
first derivative, then the slope changes from positive to negative or from negative to
positive around that point and the value of the second derivative changes. This change in
sign allows the point to be an Therefore, the
relative maximum and minimum points on the first derivative are
on the original function.
11. A double root on the first derivative graph means that there is a zero at that point, but
does not change signs around the zero point. This means that there is a
on the original graph and also indicates that there will be a
at this point.
12. If a function is continuous, but there is an undefined point on the derivative, then there
is either a,,, or on the original graph.
13. If a function is even, then the signs of the first derivative to the left of zero will be
14. If a function is even, then the signs of the first derivative to the left of zero will be
15. If a function is odd, then the signs of the first derivative to the left of zero will be
16. If a function is odd, then the signs of the first derivative to the left of zero will be