Notes about sketching with the derivative

1. If the first derivative is positive, then the original function is \qquad .
2. If the first derivative is negative, then the original function is \qquad .
3. If the first derivative is zero, then there is either a \qquad .
\qquad or \qquad on the original function.
4. If the second derivative is positive, then the original function is \qquad .
5. If the second derivative is negative, then the original function is \qquad .
6. If the second derivative is zero, then there is an \qquad
\qquad
___ on the original function. To determine if this point is an \qquad
___ you must check to see if the second derivative changes signs around the point.
If the concavity changes around the point, then it is an \qquad .
7. If the slopes of the first derivative are positive then the \qquad
is positive. As stated above if the second derivative is positive, then the original is
\qquad .

Therefore, if the slopes of the first derivative are positive then the original is
8. If the slopes of the first derivative are negative then the \qquad
\qquad is negative.

As stated above if the second derivative is negative, then the original is \qquad
\qquad .

Therefore, if the slopes of the first derivative are negative then the original is
10. If the slopes of the first derivative are zero, then the \qquad
is zero. If the second derivative is zero then the original has a \qquad
\qquad . If the point in question is a relative maximum or a relative minimum on the first derivative, then the slope changes from positive to negative or from negative to positive around that point and the value of the second derivative changes. This change in sign allows the point to be an \qquad
\qquad . Therefore, the relative maximum and minimum points on the first derivative are \qquad on the original function.
11. A double root on the first derivative graph means that there is a zero at that point, but does not change signs around the zero point. This means that there is a \qquad on the original graph and also indicates that there will be a \qquad at this point.
12. If a function is continuous, but there is an undefined point on the derivative, then there is either a \qquad , \qquad or \qquad on the original graph.
13. If a function is even, then the signs of the first derivative to the left of zero will be
\qquad of the signs on the right side of zero.
14. If a function is even, then the signs of the first derivative to the left of zero will be
\qquad of the signs on the right side of zero.
15. If a function is odd, then the signs of the first derivative to the left of zero will be
\qquad of the signs on the right side of zero.
16. If a function is odd, then the signs of the first derivative to the left of zero will be
\qquad of the signs on the right side of zero.
17. If there is an undefined point on the first derivative, then there will be a \qquad
\qquad on the second derivative at the same x-value.

