CALCULUS I

Worksheet \#72

	For \#1 - 5, find velocity and acceleration, if s represents the position of the body at any time t. $\begin{aligned} & v=\frac{d s}{d t} \\ & a=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}} \end{aligned}$
1.	$s=t^{2}-4 t+3$
2.	$s=2 t^{3}-5 t^{2}+4 t-3$
3.	$s=3+4 t-t^{2}$
4.	$\mathrm{s}=(2 \mathrm{t}+3)^{2}$
5	$\mathrm{s}=\mathrm{gt}{ }^{2}+\mathrm{v}_{\mathrm{O}} \mathrm{t}+\mathrm{s}_{\mathrm{O}}\left(\mathrm{g}, \mathrm{v}_{\mathrm{O}}, \mathrm{s}_{\mathrm{O}}\right.$ constants.$)$
6.	A particle projected vertically upward with a speed of $160 \frac{f t}{\mathrm{sec}}$ reaches an elevation $\mathrm{s}=160 \mathrm{t}-16 \mathrm{t}^{2}$ at the end of t seconds. (a) How high does it rise? (b) How fast is it traveling when it reaches an elevation of 256 feet going up; and again when it reaches that elevation coming down?
7.	A particle moves along the x -axis in such a way that its acceleration at time t for $\mathrm{t}>0$ is given by $\mathrm{a}(\mathrm{t})=\frac{3}{t^{2}}$. When $\mathrm{t}=1$, the position of the particle is 6 and the velocity is 2 . (Hint: This is an initial value problem from first semester) a) Write an equation of the velocity, $v(t)$, of the particle for all $t>0$. b) Write an equation for the position, $x(t)$, of the particle for all $t>0$. c) Find the position of the particle when $t=e$.
8.	Let f be the function defined by $f(\mathrm{x})= \begin{cases}x^{3} \text { for } \\ x \text { for } & x>0,\end{cases}$ Which of the following statements about f is true? A) f is an odd function B) f is discontinuous at $\mathrm{x}=0$ C) f has a relative minimum D) $f^{\prime}(0)=0$ E) $f^{\prime}(x)>0$ for $x \neq 0$
9.	Let R be the region in the first quadrant enclosed by the graph of $y=(x+1)^{1 / 3}$, the line $x=7$, the x -axis, and the y -axis. The volume of the solid generated when R is revolved about the x -axis is given by A) $\pi \int_{0}^{7}(x+1)^{2 / 3} d x$ B) $\pi \int_{0}^{7}(x+1)^{1 / 3} d x$ C) $\pi \int_{0}^{2}(x+1)^{2 / 3} d x$ D) $\pi \int_{0}^{2}(x+1)^{1 / 3} d x$ E) $\pi \int_{0}^{7}\left(y^{3}-1\right)^{2} d y$

Answers:

1. $\mathrm{v}=2 \mathrm{t}-4, \mathrm{a}=2$	$2 . \mathrm{v}=6 \mathrm{t}^{2}-10 \mathrm{t}+4, \mathrm{a}=12 \mathrm{t}-10$	$3 . \mathrm{v}=4-2 \mathrm{t}, \mathrm{a}=-2$
4. $\mathrm{v}=8 \mathrm{t}+12, \mathrm{a}=8$	$5 . \mathrm{v}=2 \mathrm{gt}+\mathrm{v}_{\mathrm{o}}, \mathrm{a}=2 \mathrm{~g}$	6a. 400 ft. b. $\mathrm{vup}=96 \frac{\mathrm{ft} .}{\sec }, \mathrm{v}$ down $=-96 \frac{\mathrm{ft} .}{\sec }$
7a. $\quad v=\frac{-3}{t}+5$ b. $x=-3 \ln \|t\|+5 t+1$ c. $x(e)=5 e-2$	8. E	9. A

