Sect. 12-4: Convergent and Divergent Series

If an infinite series has a sum, or limit, the series is <u>CONVERGENT</u>. If a series is not convergent, it is <u>DIVERGENT</u>.

Are arithmetic series convergent or divergent?

Are geometric series convergent or divergent?

**Examples**: Determine whether each series is convergent or divergent.

3) 
$$\frac{1}{4} + \frac{1}{12} + \frac{1}{36} + \dots$$

If a series is neither arithmetic nor geometric, we must have a different way to decide its convergence or divergence.

Ratio Test for Convergence of a Series
Let  $a_n$  and  $a_{n+1}$  represent two consecutive terms of a series of positive terms. Suppose  $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$  exists and that  $r = \lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ . Then the series is convergent if r < 1 & divergent if r > 1. If r = 1, the test provides no information.

Examples: Use the ratio test to determine whether each series is convergent or divergent.

1) 
$$2+\frac{2^2}{2}+\frac{2^3}{3}+...$$

2) 
$$1+\frac{1}{2^2}+\frac{1}{3^3}+...$$

3) 
$$2+\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+...$$

## Remember: "n!" is read "n factorial" and means n! = (n)(n-1)(n-2)...(1)

4) 
$$1+\frac{2}{1\cdot 2\cdot 3}+\frac{3}{1\cdot 2\cdot 3\cdot 4\cdot 5}+\frac{4}{1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7}+...$$

## You try:

1) 
$$10 + \frac{10^2}{1 \cdot 2} + \frac{10^3}{1 \cdot 2 \cdot 3} + \dots$$

2) 
$$1+\frac{1}{2!}+\frac{1}{3!}+...$$