By Definition a function has symmetry about the $\mathbf{y}$-axis if $\mathbf{f}(-\mathbf{x})=\mathbf{f}(\mathbf{x})$. Which means that if you put a -x in for the x's of the function and you end up with the same function you started with, then the graph has y axis symmetry.
Example: $y=\frac{x^{2}-4}{x^{4}-x^{2}} f(-x)=\frac{(-x)^{2}-4}{(-x)^{4}-(-x)^{2}}=\frac{x^{2}-4}{x^{4}-x^{2}}=f(x)$ so this function has $y$-axis symmetry.
A function with $y$-axis symmetry is called an even function.

There is a shortcut to see if polynomials have $y$-axis symmetry. If all of the powers of $x$ are even then the function is even; therefore, it has y-axis symmetry.
Example $\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}+\mathrm{x}^{2}-1$ is even. (The x of the constant term is $\mathrm{x}^{0}$ and 0 is considered even)

By Definition a function has symmetry about the origin if $\mathbf{f}(-\mathbf{x})=\mathbf{- f}(\mathbf{x})$. Which means that if you put $a-x$ in for the $x$ 's of the function and you end up with the negative of function you started with, then the graph has origin symmetry.
Example: $y=\frac{x^{3}-4 x}{x^{4}-x^{2}} f(-x)=\frac{(-x)^{3}-4(-x)}{(-x)^{4}-(-x)^{2}}=\frac{-x^{3}+4}{x^{4}-x^{2}}=\frac{-\left(x^{3}-4\right)}{x^{4}-x^{2}}=-f(x)$ so this function has origin symmetry.
A function with origin symmetry is called an odd function.
There is a shortcut to see if polynomials have origin symmetry. If all of the powers of $x$ are odd then the function is odd; therefore, it has origin symmetry.
Example $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+\mathrm{x}$ is odd.

If you mix up the types of powers then we say that the function has no symmetry.
Example $f(x)=x^{3}-5$ has not symmetry (Remember constants are considered even because they have an $x^{0}$ there)

If you have a rational function, then you treat the functions like signed numbers. Determine the symmetry of the numerator and denominator.
A) If it is even (y axis symmetry) treat it like a (+)
B) If it is odd (origin symmetry)treat it like a (-)
$y=\frac{\text { even }}{\text { odd }}=\frac{+}{-}=-$ which means that the rational function is odd (has origin symmetry)
$\mathrm{y}=\frac{\text { even }}{\text { even }}=\frac{+}{+}=+\quad$ which means the rational function is even (has y -axis symmetry)
$\mathrm{y}=\frac{\text { odd }}{\text { odd }}=\underset{-}{-}=\quad+$ which means the rational function is even (has y -axis symmetry)
If the numerator or denominator has no symmetry, that automatically means that the rational function has no symmetry (y-axis or origin).
I. List the symmetry of the following functions.

1. $y=\frac{x^{3}-x}{x^{2}-2}$
2. $y=\frac{x}{x^{2}-4}$
3. $\mathrm{y}=\frac{2}{\mathrm{x}^{2}}$
4. $y=\frac{x^{2}-x}{x^{3}+x-5}$ $\qquad$ 9. $y=\cos x+x^{2}$
5. $y=\frac{x^{3}}{x^{5}-x}$
6. $y=x^{3}-x$
7. $y=x^{2}+3$
$\qquad$
$\qquad$
8. $y=e^{x}+2$
$\qquad$ 10. $\mathrm{y}=\frac{\sin \mathrm{x}}{\mathrm{x}^{3}}$

List the type of function given in each graph.( Polynomial, Rational, Trigonometric, Exponential, Logarithmic, Basic Function that doesn't fit a category)

2.

3.



