Intro to Analysis

Name \qquad

Trig Graphing Overview

For the following questions, graph the group of functions in the provided window. We will be looking at the general function $\mathbf{y}=\mathbf{A} \sin (\mathbf{B}(\mathbf{X}-\mathbf{C}))+\mathbf{D}$ (Why aren't we looking at the cosine function as well?) Make sure your calculator is in the Radians mode.

1. Use a domain of $[-\pi, 2 \pi]$ and a range of $[-5,5]$
```
\(Y 1=\sin (X)\) (make darker) How does the " \(A\) " value change the graph?
\(\mathrm{Y} 2=2 \sin (\mathrm{X})\)
\(\mathrm{Y} 3=5 \sin (\mathrm{X})\)
\(Y 4=0.5 \sin (X)\)
```

Changes:
Stays the Same:
2. Domain: $[-\pi, 2 \pi]$

Range: [-1.5, 1.5]

```
Y1= sin (X) (make darker) How does the "B" value change the graph?
Y2= sin (2X)
Y3= sin (3X)
Y4= sin (0.4X)
```

Changes:
Stays the Same:
3. Domain: $[-\pi, 2 \pi]$ Range: [-1.5, 1.5]

```
Y1= sin (X) (make darker) How does the "C" value change the graph?
Y2= sin (X + \pi/4)
Y}3=\operatorname{sin}(\textrm{X}-\pi/6
Y4}=\operatorname{sin}(\textrm{X}-2\pi
```


Changes:

Stays the Same:
4. Domain: $[-\pi, 2 \pi]$

$$
\begin{aligned}
& \text { Y1 }=\sin (X) \text { (make darker }) \quad \text { How does the "D" value change the graph? } \\
& Y 2=\sin (X)+1 \\
& Y 3=\sin (X)-0.75 \\
& Y 4=\sin (X)+3
\end{aligned}
$$

Changes:

Stays the Same:

