Worksheet #13 Review for Test #3: Derivatives

Use the limit definition of derivative to find the derivatives of the functions in problems 1-4. 1. $y=2x^2+1$ 2. f(x) = 3x-43. $g(x) = x^3 + 1$ Find the derivative of each function below. 6. $y = \sqrt{3 - 2x}$ $8. \ y = 3x^{\frac{2}{3}} - 4x^{\frac{1}{2}} - 2$ 5. $y = \frac{2-x}{3x+1}$ 9. $y = 2\sqrt{x} - \frac{1}{2\sqrt{x}}$ 10. $y = \frac{x}{\sqrt{1 - x^2}}$ 11. Which choice is the derivative of $y = (4x+1)^2 (1-x)^3$ A) $(4x+1)^2 (1-x)^2 (5-20x)$ B) $(4x+1)(1-x)^2 (4x+11)$ C) $5(4x+1)(1-x)^2(1-4x)$ D) $(4x+1)(1-x)^2(11-20x)$ E) $-24(4x+1)(1-x)^2$ 14. y=5 15. Find $f^{III}(2)$ for f(x) =13. $y = \sqrt{x^2 + 2x - 5}$ 12. $y = \frac{1}{x}$, $x^4 - 4x^2$ Find $y^{IV}(1)$ 17. $f(x) = \frac{x-1}{\sqrt{2x}}$ 18. $y = (x^2 - 2)(x^{-1} + 2)$ 19. $y = \left(\frac{x}{x^2 - 1}\right)^{-1}$ $y = 3x^{2} + \frac{2}{x} - \frac{5}{x^{2}} \qquad y = \frac{x^{-5}}{5} - \frac{x^{-2}}{2} + x^{-1} + 4 \qquad 22 \quad f(x) = \overline{\left(\frac{x-1}{x+1}\right)^{3}}$

Answer each question about tangents and normals.

- 23. Find the points on the curve $y = 2x^3 3x^2 12x + 20$ where the tangent is parallel to the x-axis.
- 24. Find the x and y intercepts of the line that is tangent to the curve $y = x^3$ at the point (-2, -8).
- 25. If the line -4x+y=2 is tangent to the curve $y = \frac{1}{3}x^3 + c$, find c.
- 26. Find the slope of the normal to $f(x) = 2x^3 + x^2 1$ at the point where $x = \frac{1}{2}$.
- 27. Find the equation of the tangent to $y = \sqrt{x^3 + 1}$ at the point where x=-1.
- 28. Graph the function whose equation is $g(x) = \frac{1}{x-2}$ then find and graph the tangent at the point (3,f(3)).
- 29. Find $\frac{dy}{dx}$ for $y = (x^2 + 1)(x^3 + 1)$ then find the slope of the normal when x = -1
- 30. Graph the function $y = 2x^2 + 4x 1$ then find and graph the tangent line at the point where x=1.
- 31. Find an equation of the line perpendicular to the tangent to the curve $y = x^4 + x 1$ at the point (1,1).
- 32. Find the points on the curve $\sqrt{x+1}$ where the tangent is parallel to the y-axis.
- 33. If the line y=2x+4 is tangent to the curve $y = \frac{1}{2}x^4 + c$, find c.
- 34. Find $\frac{dy}{dx}$ for $y = (x-1)(x^2+5x-1)$ then find the slope of the tangent when x=3
- 35. Find the x and y intercepts of the line that is tangent to the curve $4\sqrt{x^2-5}$ at the point (3,8).
- 36. Find the slope of the tangent line and the normal line to the curve $y = x\sqrt{x+1}$ at the point where x=1.

37. If the line 2x-y=3 is tangent to the function $f(x) = x^2 + 2x - 3$, what is the point of tangency?

38. If the slope of a tangent line is 5 then what is the slope of the normal line to the same curve at the same point?

39. At what x-value is y = 3x - 1 tangent to $f(x) = x^3 + 1$.

40. Find the equation of the normal line to the curve $f(x) = \left(\frac{x-1}{x+1}\right)^{-2}$ at the point where x=2.

Answers:

1. 4x	2. 3	$3. 3x^2$	4. $\frac{-2}{(x+4)^2}$	$5. \frac{-7}{(3x+1)^2}$
$6. \ \frac{-1}{\sqrt{3-2x}}$	$7.$ $\frac{-30}{\left(5x+1\right)^4}$	$8. \ 2x^{-1/3} - 2x^{-1/2}$	$9. \ \frac{4x+1}{4x\sqrt{x}}$	10. $\frac{1}{\sqrt{(1-x^2)^3}}$
11. C	12. 24	13. $\frac{x+1}{\sqrt{x^2 + 2x - 5}}$	14. 0	15. 48
$16. \ \frac{3}{2}\sqrt{x}$	$\frac{x+1}{\sqrt{(2x)^3}}$	18. $4x + 2x^{-2} + 1$	19. $\frac{x^2+1}{x^2}$	$20. \ 6x - \frac{2}{x^2} + \frac{10}{x^3}$
$ \begin{array}{c c} 21. \\ -x^{-6} - x^{-3} - x^{-2} \end{array} $	$\frac{6(x-1)^2}{\left(x+1\right)^4}$	23. x= -1, 2	$24. \left(\frac{-4}{3}, 0\right),$ $(0,16)$	$25. \ \frac{-26}{3}, \frac{38}{3}$
26. $\frac{-2}{5}$	27. x= -1	28. $y = -x + 4$ (solution also requires graph of function and tangent line)	$ \begin{array}{r} 29. \\ 5x^4 + 3x^2 + 2x, \\ \frac{-1}{6} \end{array} $	30. $y = 8x - 3$ (solution also requires graph of function and tangent line)
31. $y-1 = \frac{-1}{5}(x-1)$	32. (-1,0)	33. 5.5	34. 50	35. (5/3, 0), (0, -10)
$y-1 = \frac{-1}{5}(x-1)$ 36. $\frac{5}{2\sqrt{2}}, \frac{-2\sqrt{2}}{5}$	37. (0, -3)	$38. \frac{-1}{5}$	39. x=1	40. $y-9=\frac{1}{12}(x-2)$