\qquad
Differential Equations WS
Do not use your calculator to solve the differential equation.
Solve the initial value problem by separation of variables.

1. $\frac{d y}{d x}=\frac{x^{2}}{y}$ given $y=-5$ when $x=3$
2. $\frac{d y}{d x}=6 x^{2} y$ and $y(0)=4$
3. $\frac{d y}{d x}=\frac{1}{y^{2}}$ and $y(0)=4$
4. $\frac{d y}{d x}=\frac{1+x}{\sqrt{y}}$ and $y(2)=9$
5. $\frac{d y}{d x}=-x y^{2}$ and $y(1)=-0.25$
6. $\frac{d y}{d x}=\frac{4 \sqrt{y} \ln x}{x}$ and $y(e)=9$
7. Find an equation of the curve that satisfies $\frac{d y}{d x}=4 x^{3} y$ and whose y-intercept is 7 .
8. Find an equation of the curve that passes through the point $(1,1)$ and whose slope at (x, y) is $\frac{y^{2}}{x^{3}}$.
9. If $\frac{d y}{d t}=-3 y$ and if $y=1$ when $t=0$, what is the value of t for which $y=\frac{1}{3}$?
10. If $\frac{d y}{d x}=y \cos x$ and $y=3$ when $x=0$, then $y=$?
11. If $f^{\prime}(x)=2 f(x)$ and $f(2)=1$, then $f(x)=$?
12. If $\frac{d y}{d x}=2 y^{2}$ and if $y=-1$ when $x=1$, then when $x=2, y=$
(A) $-\frac{2}{3}$
(B) $-\frac{1}{3}$
(C) 0
(D) $\frac{1}{3}$
(E) $\frac{2}{3}$
13. If $\frac{d y}{d x}=x^{2} y$, then y could be
(A) $3 \ln \left(\frac{x}{3}\right)$
(B) $e^{\frac{x^{3}}{3}}+7$
(C) $2 e^{\frac{x^{3}}{3}}$
(D) $3 e^{2 x}$
(E) $\frac{x^{3}}{3}+1$
14. If the graph of $y=f(x)$ contains the point $(0,-5)$ and if $\frac{d y}{d x}=\frac{x-3}{y}$, then $f(x)=$
(A) $\sqrt{x^{2}-6 x}$
(B) $\sqrt{x^{2}-6 x+25}$
(C) $-\sqrt{x^{2}-6 x+25}$
(D) $\frac{x^{2}}{2}-3 x+5$
(E) $\frac{(x-3)^{2}}{2}+5$
15. Suppose $\frac{d f}{d x}=4 x^{1 / 2}$. If $f(4)=21$, then $f(x)=$
(A) $\sqrt{x^{3}}+2$
(B) $\frac{8}{3} x^{3 / 2}-\frac{1}{3}$
(C) $-\frac{3}{8}\left(1-2 x^{2}\right)^{2 / 3}$
(D) $\frac{1}{3}(x+4)^{3}$
(E) $6 x^{3 / 2}-27$
16. If $\frac{d y}{d x}=\sin x \cos ^{2} x$ and if $y=0$ when $x=\frac{\pi}{2}$, what is the value of y when $x=0$?
(A) -1
(B) $-\frac{1}{3}$
(C) 0
(D) $\frac{1}{3}$
(E) 1
17. (no calc) The function f is differential for all real numbers. The point $\left(3, \frac{1}{4}\right)$ is on the graph of $y=f(x)$, and the slope at each point (x, y) on the graph is given by $\frac{d y}{d x}=y^{2}(6-2 x)$.
(a) Find $\frac{d^{2} y}{d x^{2}}$ and evaluate is at the point $\left(3, \frac{1}{4}\right)$.
(b) Find $y=f(x)$ by solving the differential equation $\frac{d y}{d x}=y^{2}(6-2 x)$ with the initial condition $f(3)=\frac{1}{4}$.
18. (no calc) Consider the differential equation $\frac{d y}{d x}=\frac{3 x^{2}}{e^{2 y}}$.
(a) Find a solution $y=f(x)$ to the differential equation satisfying $f(0)=\frac{1}{2}$.
(b) Find the domain and range of the function f found in part (a).
